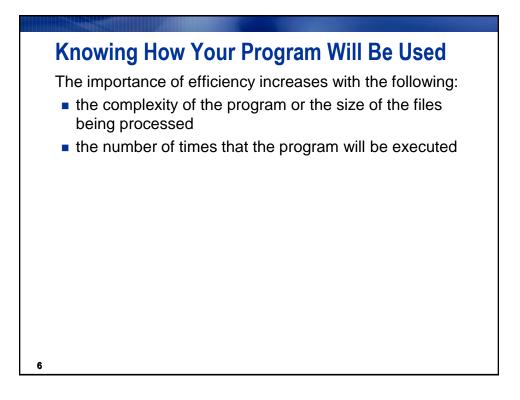
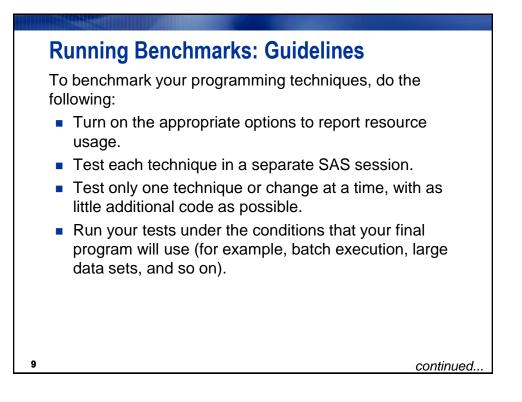

Best Practices Using BASE SAS Software

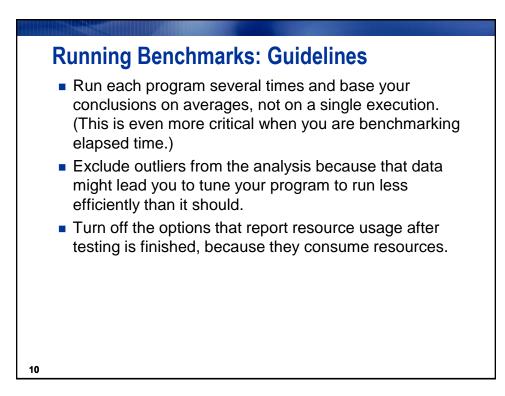


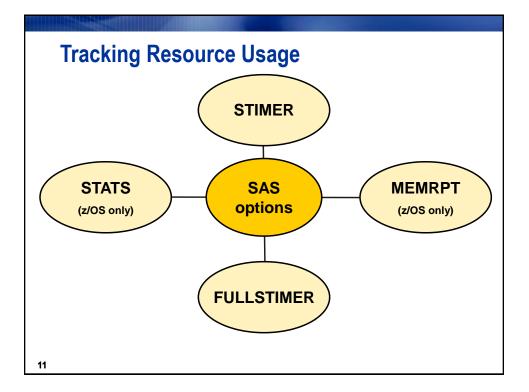
Best Practices Using BASE SAS Software

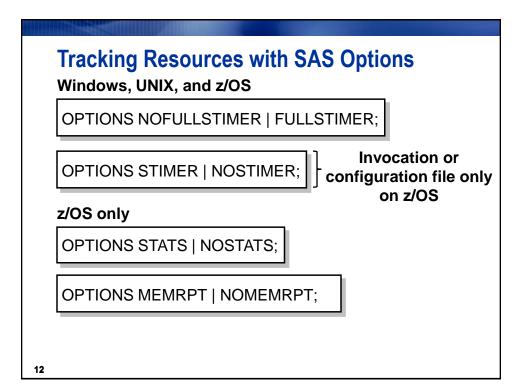
Contents c				ſ	General Details Columns	Indexes Integritu	Passwords	
Budge					actional potalis columno	I meenes meeging	- desmoids	
Compa					Find column name:			Fin <u>d</u>
Contin								
Count					Column Name	Туре	Length Format	Informat
	mer_dim				10: Customer_ID	Number	8 12.	
Emplo [.]					A Customer_Country	Text	2	
Emplo [.]					A Customer Gender	Text	1	
		anization			A Customer Name	Text	40	
Emplo [.]	yee_pay	/roll			A Customer FirstName	Text	20	
Emplo ⁻	yee_pho	ones			A Customer_LastName	Text	30	
Europ	ecustom	ers			W: Customer_BirthDate	Number	8 DATE9.	
🛅 Myfm	e						o philpi	1
Order		Customer ID Co	tomer Custome untry Gender	Customer Name	Customer First Name	Customer Las	t Name 📥	
Order	1	4 US	M	James Kvarnig	James	Kvarniq		
Crgar	2	5 US 9 DE	F	Sandrina Stephano Comelia Krahl	Sandrina Comelia	Stephano Krahl		
Produ	4	10 US	F	Karen Ballinger	Katen	Balinger		
Profit	5	11 DE	F	Elke Wallstab	Eke	Wallstab		
Rates	6	12 US	м	David Black	David	Black		
Re_or	7	13 DE	м	Markus Sepke	Markus	Sepke		
	8	16 DE	M	Ulrich Heyde	Ulrich	Heyde		Þ
Salar	9	17 US 18 US	M	Jimmie Evans Tonie Asmussen	Jimmie Tonie	Evans Asmussen		
Sales	11	18 US 19 DE	M	Diver S. Fußling	Diver S.	Füßling		
Sales	12	20 US	M	Michael Dineley	Michael	Dineley		OK Course
Staff	13	23 US	M	Tulio Devereaux	Tulio	Devereaux		OK Cance
Suppl	14	24 US	F	Robyn Klem	Robyn	Klem		
Totals	15	27 US	F	Cynthia Mooluney	Cynthia	Mccluney		
***	16	29 AU	F	Candy Kinsey	Candy	Kinsey		
- Resu	17	31 US	F	Cynthia Martinez Bolf Bobak	Cynthia D. K	Martinez Bohak		
Hest	18	33 DE 34 US	M	Holt Hobak Alvan Goheen	Rolf	Hobak Goheen		
7	20	34 US 36 US	M	Alvan Goneen Phenix Hill	Phenix	Hill		
	20	30 US	M	Alphone Greenwald	Alphone	Greenwald		
		41 AU	M	Wendell Summersby	Wendel	Summersby		
	22							

Considering Trade-Offs

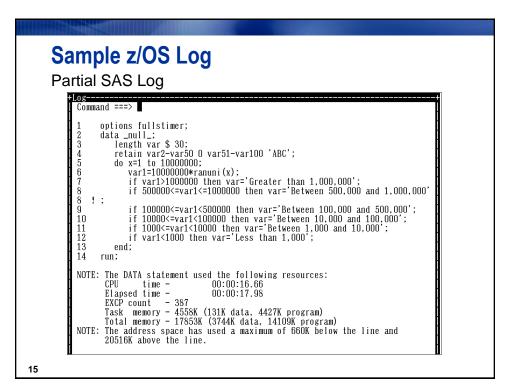

In this seminar, many tasks are performed using one or more techniques.

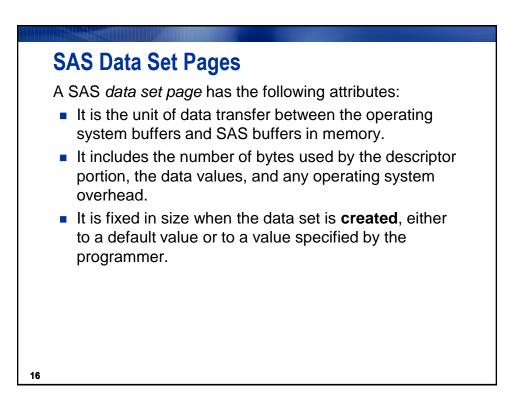

To decide which technique is most efficient for a given task, *benchmark* (measure and compare) the resource usage of each technique.

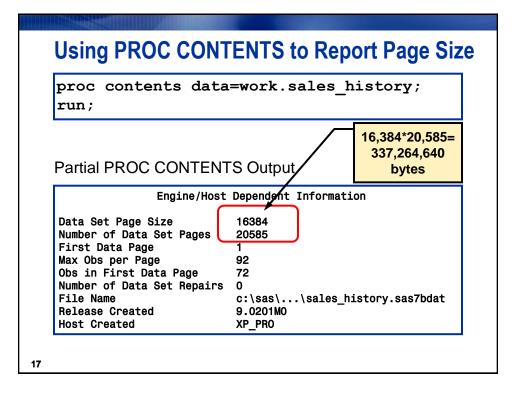

You should benchmark with the actual data to determine which technique is the most efficient.

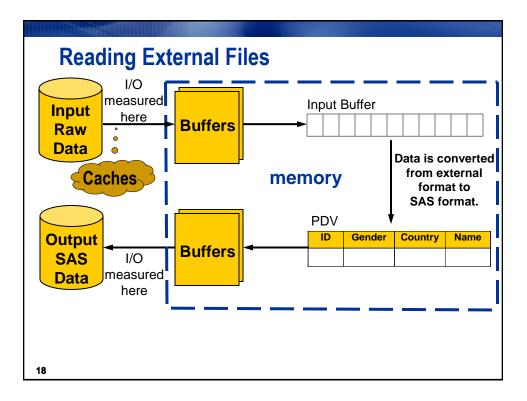


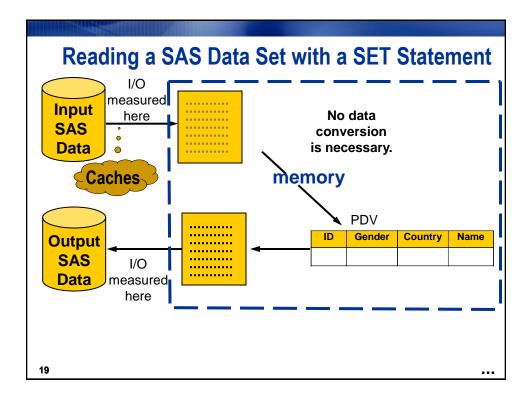
The effectiveness of any efficiency technique depends greatly on the data with which you use the technique.

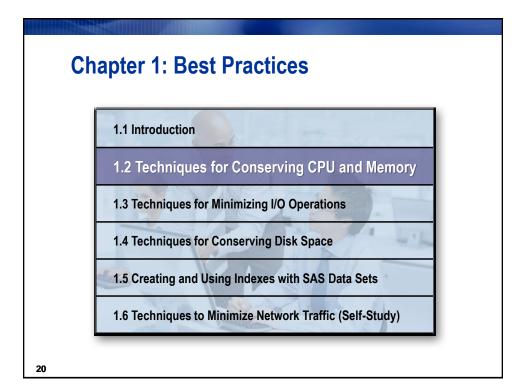


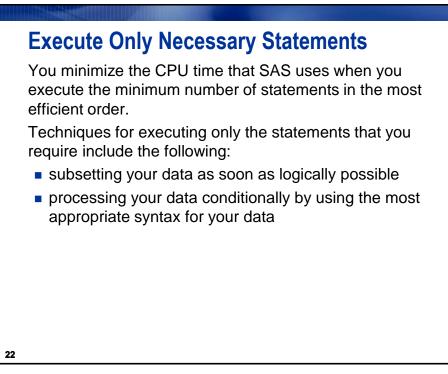





S	ample Windo	ows Log	
Pa	artial SAS Log	-	
5	options fullstimer;		
6	data _null_;		
7	length var \$ 30;		
8	retain var2-var50	0 var51-var100 'ABC';	
9	do x=1 to 1000000		
10	var1=10000000*i		
11		D then var='Greater than 1,000,000';	
12		<pre>1<=1000000 then var='Between 500,000 and 1,000,000';</pre>	
13	if 100000<=var1<500000 then var='Between 100,000 and 500,000';		
14	if 10000<=var1<100000 then var='Between 10,000 and 100,000';		
15		10000 then var='Between 1,000 and 10,000';	
16		hen var='Less than 1,000';	
17	end;		
18	run;		
NOTE	: DATA statement used	(Total process time):	
	real time	1.26 seconds	
	user cpu time	0.98 seconds	
	system cpu time	0.04 seconds	
	Memory	278k	
	OS Memory	4976k	
	Timestamp	6/29/2010 12:39:21 PM	
19	options nofullstimer		


Sample UNIX Log	
Partial SAS Log	
<pre>1 options fullstimer; 2 data_null; 3 length var \$30; 4 retain var2-var50 0 var51-var100 'ABC'; 5 do x=1 to 10000000; 6 var1=10000000*ranuni(x); 7 if var1>100000c=var1<group ;<br="" then="" var="Between 500,000 and 1,000,000">8 if 500000c=var1<500000 then var='Between 100,000 and 500,000'; 9 if 10000c=var1<500000 then var='Between 10,000 and 500,000'; 10 if 10000c=var1<100000 then var='Between 10,000 and 100,000'; 11 if 10000<=var1<10000 then var='Between 1,000 and 100,000'; 12 if var1<1000 then var='Less than 1,000'; 13 end; 14 run; NOTE: DATA statement used (Total process time): real time</group></pre>	
Nemory 526k	
OS Memory 5680k Timestamp 6/29/2010 11:55:32 AM	
Page Faults 82 Page Reclaims 0	
Page Swaps 0	
Voluntary Context Switches 91	
Involuntary Context Switches 48	
Block Input Operations 91 Block Output Operations 0	
15 options nofullstimer;	

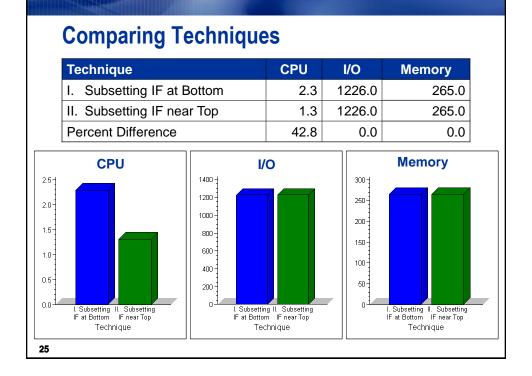


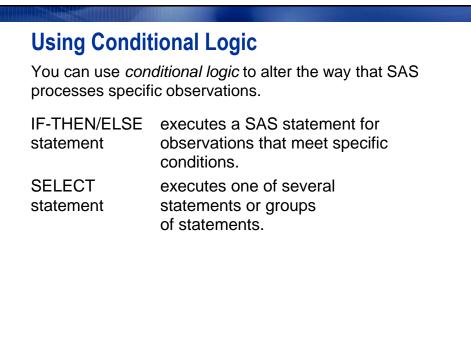


Techniques for Conserving CPU and Memory

- Execute only the necessary statements.
- Eliminate unnecessary passes of the data.
- Read and write only the data that you require.
- Do not reduce the length of numeric variables.
- Do not compress SAS data sets.
- Use Indexes

Subsetting IF Statement at Bottom of Step


Create a new SAS data set from **work.sales**. The new SAS data set should contain four new variables and only those flights filled to less than 80% capacity.


```
data totals;
  set work.sales;
  PercentCap =
     sum(Num1st,NumEcon,NumBus)/CapPassTotal;
  NumNonEconomy = sum(Num1st,NumBus);
  CargoKG = CargoWeight*0.454;
  Month = month(FltDate);
  if PercentCap < 0.8;
  run;
```

23

Subsetting IF Statement as High as Possible

```
data totals;
  set work.sales;
  PercentCap =
     sum(Num1st,NumEcon,NumBus)/CapPassTotal;
     if PercentCap < 0.8;
     NumNonEconomy = sum(Num1st,NumBus);
     CargoKG = CargoWeight*0.454;
     Month = month(FltDate);
run;
```


Using Parallel IF Statements

For the data in **work**.**sales**, create a variable named **Month**, based on the existing variable **FltDate**.

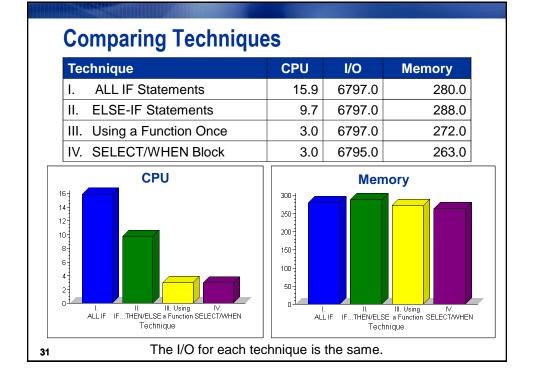
```
data month;
set work.sales;
if month(FltDate) = 1 then Month = 'Jan';
if month(FltDate) = 2 then Month = 'Feb';
if month(FltDate) = 3 then Month = 'Mar';
if month(FltDate) = 4 then Month = 'Apr';
if month(FltDate) = 5 then Month = 'May';
if month(FltDate) = 6 then Month = 'Jun';
if month(FltDate) = 7 then Month = 'Jul';
if month(FltDate) = 8 then Month = 'Aug';
if month(FltDate) = 9 then Month = 'Sep';
if month(FltDate) = 10 then Month = 'Oct';
if month(FltDate) = 12 then Month = 'Dec';
run;
```

```
Using ELSE-IF Statements
```

```
data month;
set work.sales;
if month(FltDate) = 1 then Month = 'Jan';
else if month(FltDate) = 2 then Month = 'Feb';
else if month(FltDate) = 3 then Month = 'Mar';
else if month(FltDate) = 4 then Month = 'Apr';
else if month(FltDate) = 5 then Month = 'May';
else if month(FltDate) = 6 then Month = 'Jun';
else if month(FltDate) = 7 then Month = 'Jul';
else if month(FltDate) = 8 then Month = 'Aug';
else if month(FltDate) = 9 then Month = 'Sep';
else if month(FltDate) = 10 then Month = 'Oct';
else if month(FltDate) = 11 then Month = 'Nov';
else if month(FltDate) = 12 then Month = 'Dec';
run;
```

28

Using the Function Only Once


```
data month (drop=mon);
  set work.sales;
  mon = month(FltDate);
  if mon = 1 then Month = 'Jan';
  else if mon = 2 then Month = 'Feb';
  else if mon = 3 then Month = 'Mar';
  else if mon = 4 then Month = 'Apr';
  else if mon = 5 then Month = 'May';
  else if mon = 6 then Month = 'Jun';
  else if mon = 7 then Month = 'Jul';
  else if mon = 8 then Month = 'Aug';
  else if mon = 9 then Month = 'Sep';
  else if mon = 10 then Month = 'Oct';
  else if mon = 11 then Month = 'Nov';
  else if mon = 12 then Month = 'Dec';
run;
```

29

data month; set work.sales; select(month(FltDate)); when(1) Month = 'Jan'; when(2) Month = 'Feb';

```
when(1) Month = 'Oun'; when(2) Month = 'Peb';
when(3) Month = 'Mar'; when(4) Month = 'Apr';
when(5) Month = 'May'; when(6) Month = 'Jun';
when(7) Month = 'Jul'; when(8) Month = 'Aug';
when(9) Month = 'Sep'; when(10) Month = 'Oct';
when(11) Month = 'Nov'; when(12) Month = 'Dec';
otherwise;
end;
```

run;

Guid	elines for E	fficient Con	ditional Log	gic	
	IF		SELECT]	
	Character	Туре	Numeric		
	Few	Conditions	Many		
	Not Uniform	Distribution	Uniform		
		(check for most			
		commonly			
		occurring value			
		first)			
 For mutually exclusive conditions, use the ELSE-IF statement (or SELECT statement) rather than an IF statement for all conditions except the first. 					
Check the most frequently occurring condition first.					
	-	e multiple state statements into		n a	
32					

Most Frequently Occuring Condition

PROC FREQ DATA=libraryname.datasetname ORDER=FREQ ;

TABLES variablename;

RUN;

33

Do Group Processing

```
No Do Groups - Not as Efficient:

If Status = 1

Then Bonus = Salary * 0.05;

Else If Status = 2

Then Bonus = Salary * 0.06;

Else Bonus = Salary * 0.04;

If Status = 1

Then Start_Month = month(Hire_Date);

Else If Status = 2

Then Start_Month = 6;

Else Start_Month = 1;
```

Do Group Processing

```
<u>Use of Do Groups – More Efficient</u>:

If Status = 1 Then Do;

Bonus = Salary * 0.05;

Start_Month = month(Hire_Date);

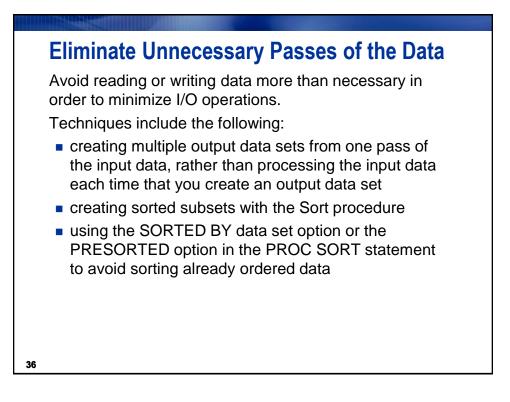
End;

Else If Status = 2 Then Do;

Bonus = Salary * 0.06;

Start_Month = 6;

End;


Else Do;

Bonus = Salary * 0.04;

Start_Month = 1;

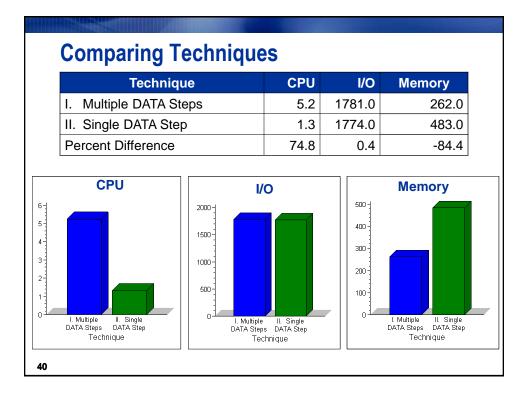
End;

End;
```


Multiple DATA Steps

Create six subsets from **work**.**sales**, one for each destination on the East Coast.

```
data rdu;
   set work.sales;
   if Dest = 'RDU';
run;
data bos;
   set work.sales;
   if Dest = 'BOS';
run;
```

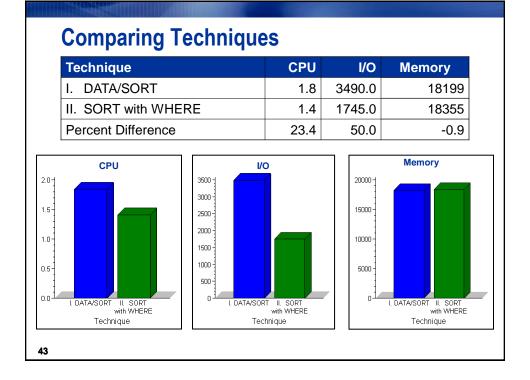

continued...

```
37
```

Multiple DATA Steps data iad; set work.sales; if Dest = 'IAD'; run; data jfk; set work.sales; if Dest = 'JFK'; run; data mia; set work.sales; if Dest = 'MIA'; run; data pwm; set work.sales; if Dest = 'PWM'; run;

Single DATA Step

```
data rdu bos iad jfk mia pwm;
set work.sales;
if Dest = 'RDU' then output rdu;
else if Dest = 'BOS' then output bos;
else if Dest = 'IAD' then output iad;
else if Dest = 'JFK' then output jfk;
else if Dest = 'MIA' then output mia;
else if Dest = 'PWM' then output pwm;
run;
```



DATA Step / PROC SORT Step

Create a sorted subset of **work.sales** that contains the flights to the East Coast.

```
data east;
   set work.sales;
   where Dest in
        ('RDU','BOS','IAD','JFK','MIA','PWM');
run;
proc sort data = east;
   by Dest;
run;
```

41

PROC SORT Step proc sort data = work.sales out = east; by Dest; where Dest in ('RDU','BOS','IAD','JFK','MIA','PWM'); run;

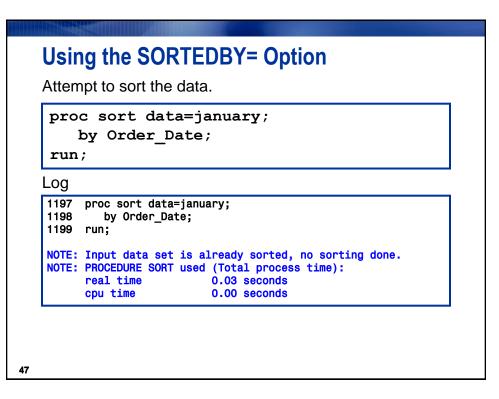
Using the SORTEDBY= Option

If the input data is in sorted order, you can specify the order by using the SORTEDBY= output data set option. The SORTEDBY= option has the following attributes:

- sets the sort flag on the data set to YES
- defines the sort flag as an asserted data order
- requires that SAS check the order of the data as it processes it

General form of the SORTEDBY option:

data-set-name(SORTEDBY=by-clause | _NULL_)

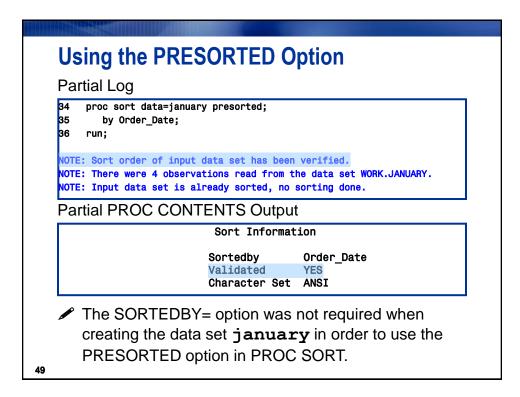


Using the SORTEDBY= Option

Create a SAS data set from an external file containing invoice information. The external file is in sorted order by order date.

<pre>filename M1 'mon1.dat';</pre>
<pre>data january(sortedby=Order_Date);</pre>
<pre>infile M1 dlm=',';</pre>
<pre>input Customer_ID Order_ID Order_Type Order Date:date9.</pre>
Delivery_Date:date9.;
run;

Using the SORTEDBY= Option Partial SAS Log						
	The CC	ONTENTS	Procedure			
Data Set Name Member Type Engine Created Last Modified Protection Data Set Type Label Data Representation Encoding	WORK.JANUARY DATA V9 Sunday, January 27 Sunday, January 27 WINDOWS_32 wlatin1 Western (<lines t<="" td=""><td>7, 2008 (Windows</td><td>05:36:23 E</td><td>Varia Index M Obser M Delet</td><td>vation Length ed Observations essed</td><td>4 5 0 40 0 NO YES</td></lines>	7, 2008 (Windows	05:36:23 E	Varia Index M Obser M Delet	vation Length ed Observations essed	4 5 0 40 0 NO YES
	Sort Inf					
	Sortedby Validated Character S	OroNO	ler_Date			
46						

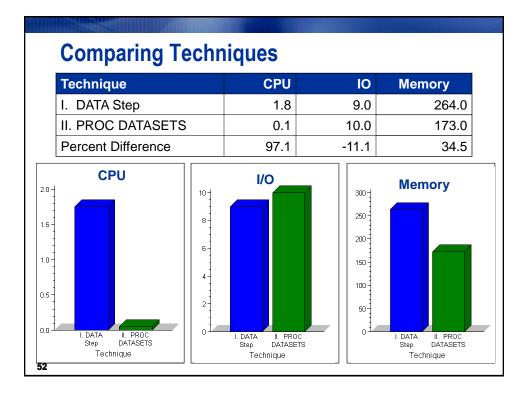

Using the PRESORTED Option

Beginning in SAS 9.2, there is a PROC SORT statement option, PRESORTED, that checks within the input data set to determine whether the sequence of observations are in order before sorting. By specifying this option, you avoid the cost of sorting the data set.

```
proc sort data=january presorted;
    by Order_Date;
run;
proc contents data=january;
```

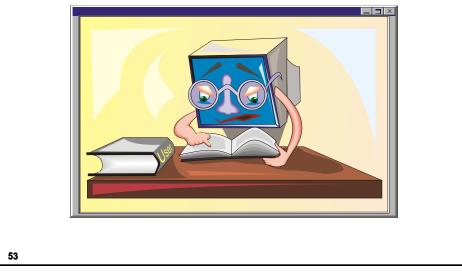
run;

If the data set january is not in sorted order by Order_Date, PROC SORT with the PRESORTED option still sorts the data.



Business Task			
Change the variable attributes in work.salesc to be consistent with those in work.sales .			
work.sales	Var Name FlightID FltDate	Var Format \$7. DATE9.	
work.salesc	FlightIDNumber FltDate	\$7. MMDDYYP10.	

DATA Step / PROC DATASETS


```
data work.salesc;
  set work.salesc;
  rename FlightIDNumber = FlightID;
  format FltDate date9.;
run;
```

```
proc datasets library=work nolist;
modify salesc;
            rename FlightIDNumber=FlightID;
            format FltDate date9.;
quit;
```

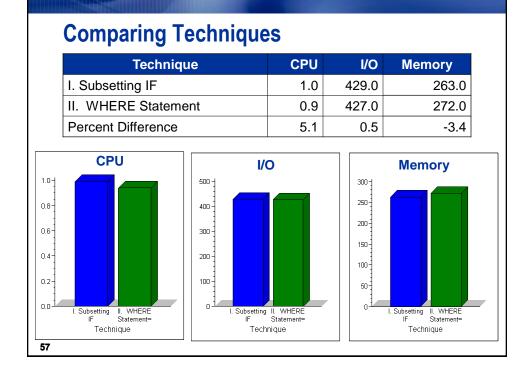

Read and Write Data Selectively

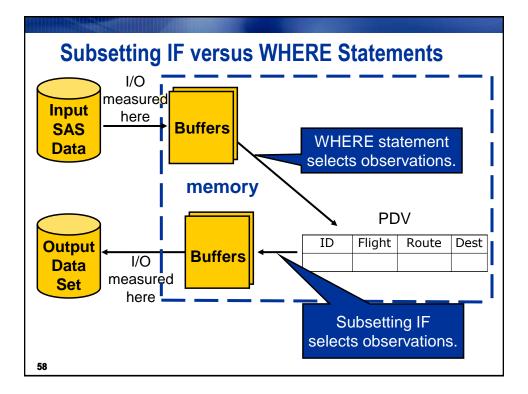
If you process fewer variables and observations, CPU and/or I/O operations can be affected significantly.

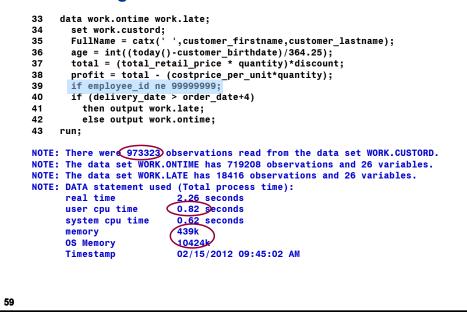
Sel	ecting Obse	Dest = "BWI"		
R	Destination	Flight Number	Route Number	
	BWI	SE00007	0000206	
	ATL	SE0003	0000202	
$ \setminus$	GSP	SE0001	0000200	
	BWI	SE0006	0000206	
54				

Sel	ecting Obse	t = "BWI"		
X	Destination	Flight Number	Route Number	
(``	BWI	SE00007	0000206	
	ATL	SE0003	0000202	
$ \setminus$	GSP	SE0001	0000200	
	BWI	SE0006	0000206	
55				

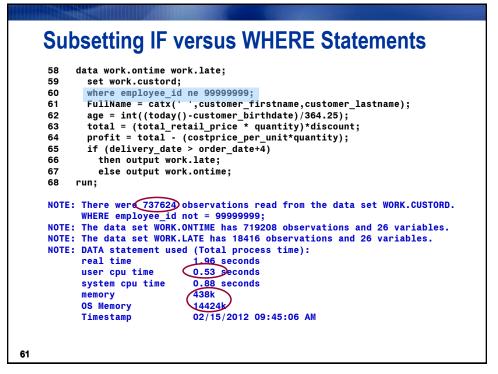
Subsetting IF versus WHERE

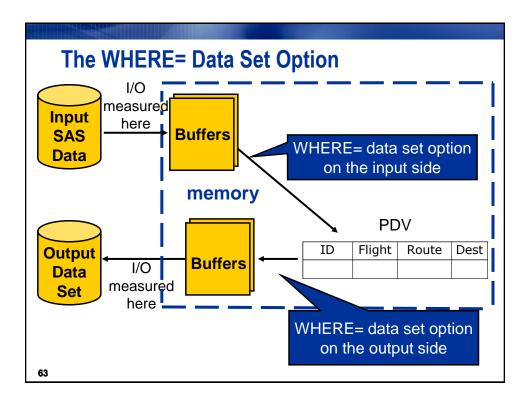

Create a subset of the sales data that contains data for West Coast destinations.


data west; set work.sales; if Dest in ('LAX','SEA','SFO'); run;

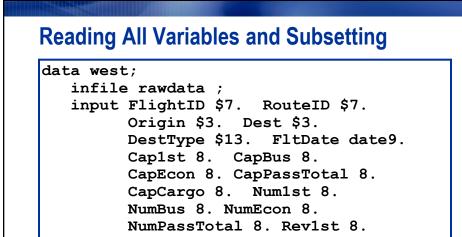

run;

where Dest in ('LAX','SEA','SFO');




Subsetting IF versus WHERE Statements

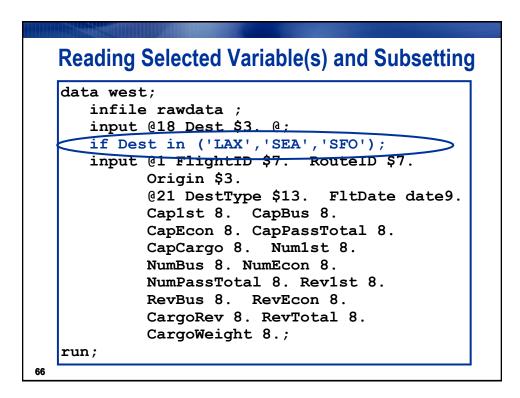
Subsetting IF versus WHERE Statements
46 data work.ontime work.late;
47 set work.custord;
<pre>48 if employee_id ne 99999999;</pre>
<pre>49 FullName = catx(' ',customer_firstname,customer_lastname);</pre>
<pre>50 age = int((today()-customer_birthdate)/364.25);</pre>
<pre>51 total = (total_retail_price * quantity)*discount;</pre>
52 profit = total - (costprice_per_unit*quantity);
53 if (delivery_date > order_date+4)
54 then output work.late;
55 else output work.ontime;
56 run;
NOTE: There were 973323 observations read from the data set WORK.CUSTORD.
NOTE: The data set WORK.ONTIME has 719208 observations and 26 variables.
NOTE: The data set WORK.LATE has 3/13/200 biservations and 20 variables.
NOTE: DATA statement used (Total process time):
real time 2.07 seconds
user cpu time 0.68 seconds
system cpu time 0.70 seconds
memory 431k
OS Memory 10424
Timestamp 02/15/2012 09:45:04 AM
60

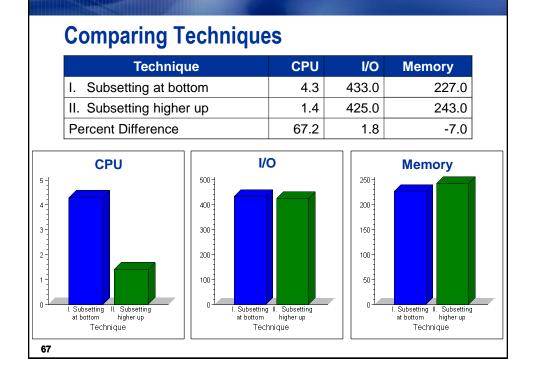

Su	bsetting IF versus WHERE Statements
69 70 71 72 73 74 75 76 77 77	<pre>data work.ontime work.late; set work.custord (where=(employee_id = 999999999)); FullName = catx(' ',customer_firstname,customer_lastname); age = int((today()-customer_birthdate)/364.25); total = (total_retail_price * quantity)*discount; profit = total - (costprice_per_unit*quantity); if (delivery_date > order_date+4) then output work.late; else output work.ontime; run;</pre>
NOTE NOTE NOTE	E: There were 737624 observations read from the data set WORK.CUSTORD. WHERE employee_id not = 99999999; E: The data set WORK.ONTIME has 719208 observations and 26 variables. E: The data set WORK.LATE has 18416 observations and 26 variables. E: DATA statement used (Total process time): real time 1.92 seconds user cpu time 0.90 seconds system cpu time 0.90 seconds memory 438k OS Memory 144244 Timestamp 02/15/2012 09:45:06 AM
62	

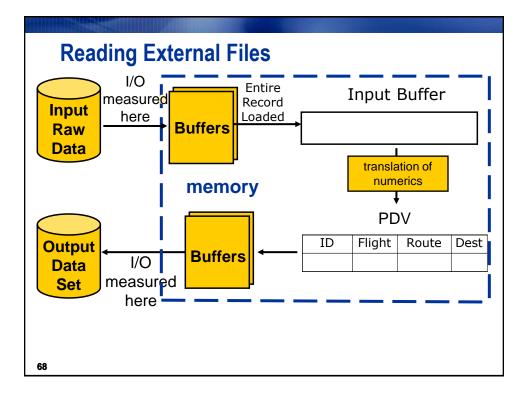
Subsetting an External File

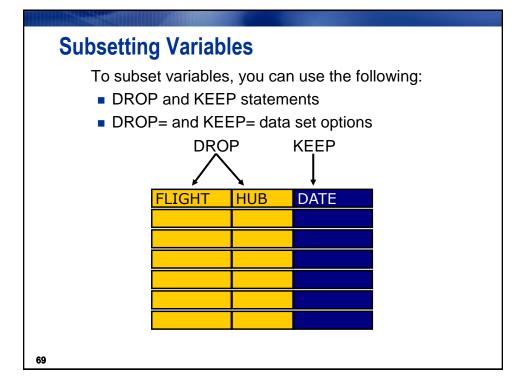
Create a subset of data that contains only the flights to the West Coast.

The data is in an external file that contains information about all flights.

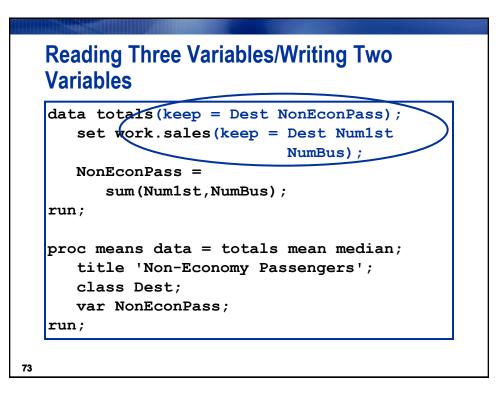


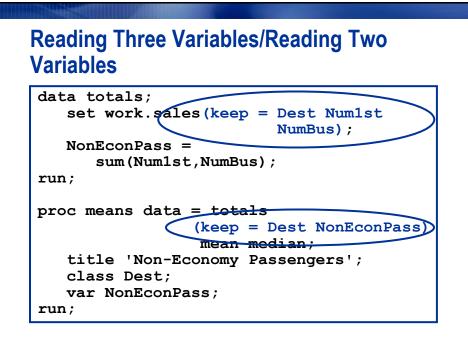

RevBus 8. RevEcon 8. CargoRev 8. RevTotal 8.

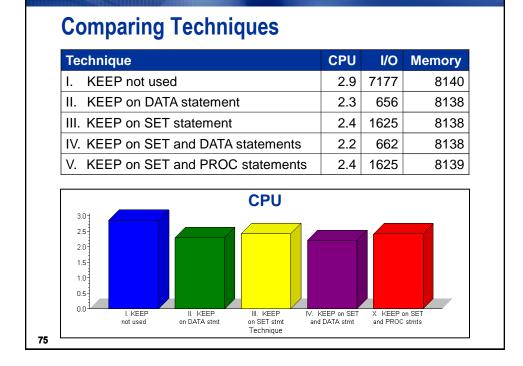

CargoWeight 8.; if Dest in ('LAX','SEA','SFO');

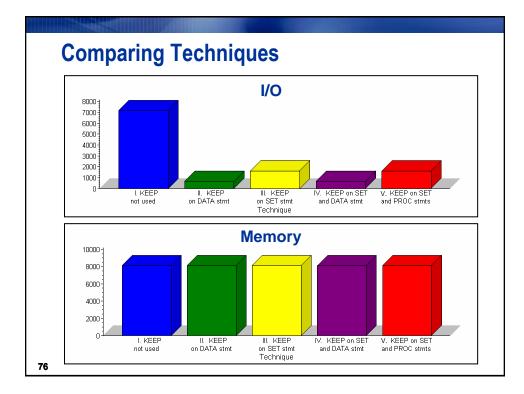

run;

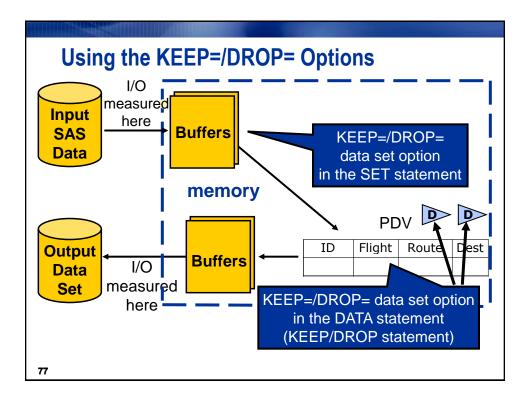
65

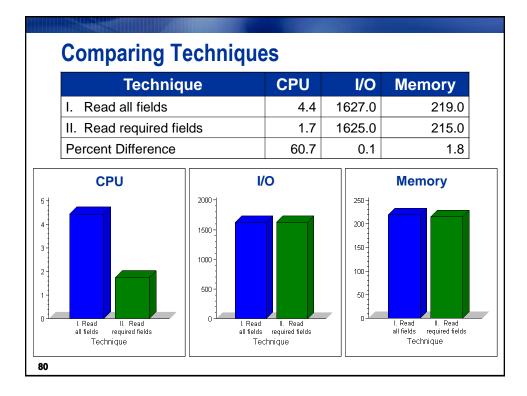







Reading All Variables/Writing Two Variables


```
data totals(keep = Dest NonEconPass);
   set work.sales;
   NonEconPass =
      sum(Num1st,NumBus);
run;
proc means data = totals mean median;
   title 'Non-Economy Passengers';
   class Dest;
   var NonEconPass;
run;
```

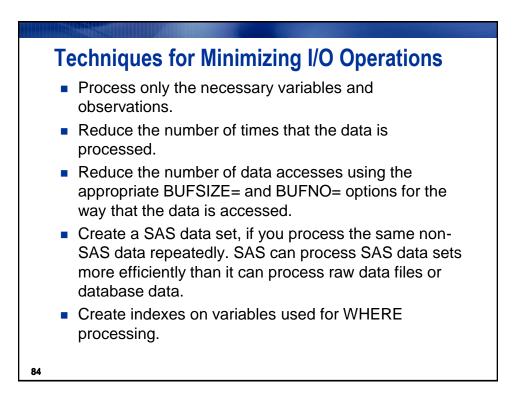
Readir	ng All Fields
infile	es(keep = FlightID Num1st NumBus NumEcon NumPassTotal); e rawdata ; FlightID \$7. RouteID \$7. Origin \$3. Dest \$3. DestType \$13. FltDate date9. Cap1st 8. CapBus 8. CapEcon 8. CapPassTotal 8. CapCargo 8. Num1st 8. NumBus 8. NumEcon 8. NumPassTotal 8. Rev1st 8. RevBus 8. RevEcon 8. CargoRev 8. RevTotal 8. CargoWeight 8.;

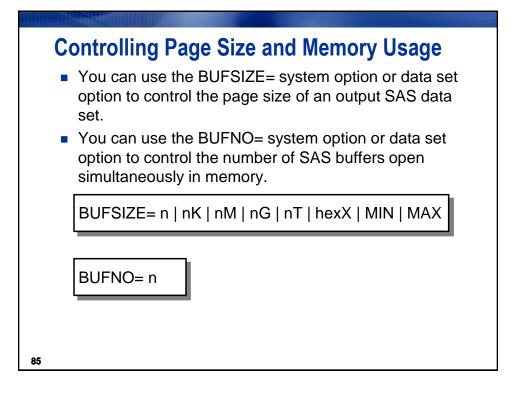
Reading Required Fields

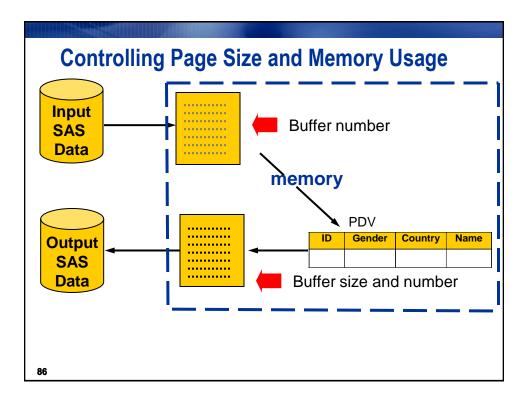
```
data sales;
infile rawdata ;
input FlightID $7. @85 Num1st 8.
NumBus 8. NumEcon 8.
NumPassTotal 8. ;
run;
```

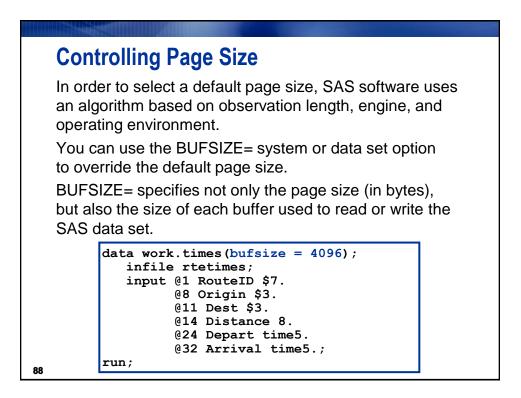

Conclusions

If the variable is already in a SAS data set, you can use the following to minimize the volume of data processed:

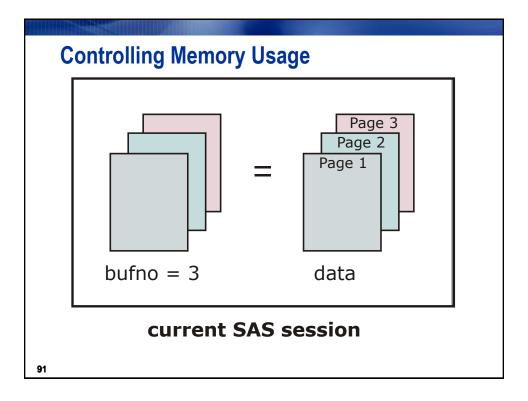

- WHERE statements in DATA and PROC steps
- KEEP and DROP statements in the DATA step
- WHERE=, KEEP=, and DROP= data set options in DATA and PROC steps


If the data is not in a SAS data set or the variable is a calculated variable, you can use the following to minimize the volume of data processed:


- subsetting IF statements
- selective INPUT statements





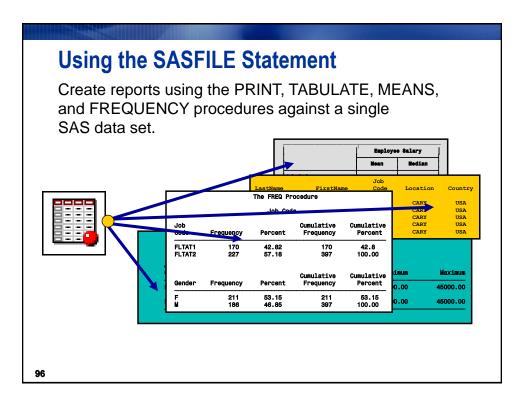


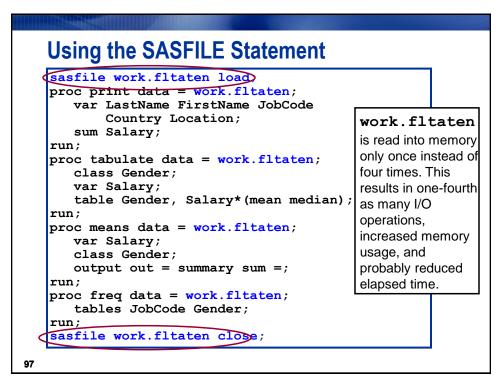
Controlling Page SizeAfter it is specified, page size is a permanent attribute of
the data set, and is used whenever the data set is
processed.Choosing a page size that is larger than the default can
reduce execution time by reducing the number of times
that SAS must read from or write to the operating system
buffers.The reduction in I/O comes at the cost of increased
memory consumption.

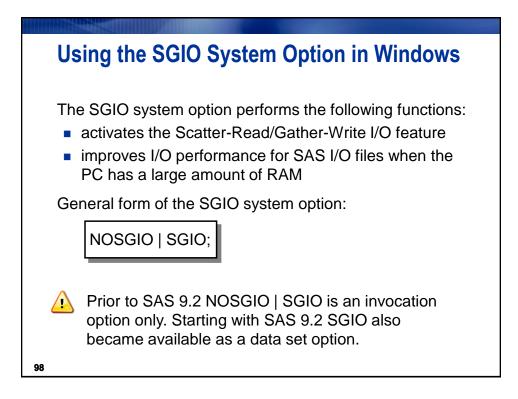
Controlling Memory Usage	
The buffer number is not a permanent attribute of the or set and is valid only for the current step or SAS session. As more buffers are available, more pages can be transferred in a single move operation.	
The reduction in number of moves comes at the cost of increased memory consumption.	of
<pre>data _null_; set work.times(bufno = 3); run;</pre>	
92	

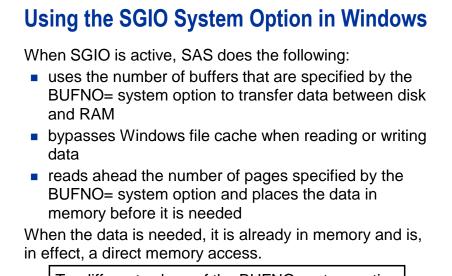
SASFILE Global Statement

- The SASFILE statement requests that a SAS data set be opened and loaded into SAS memory in its entirety instead of a few pages at a time.
- After it is read, data is held in memory for subsequent DATA and PROC steps to process.
- A second SASFILE statement closes the file and frees the SAS buffers.

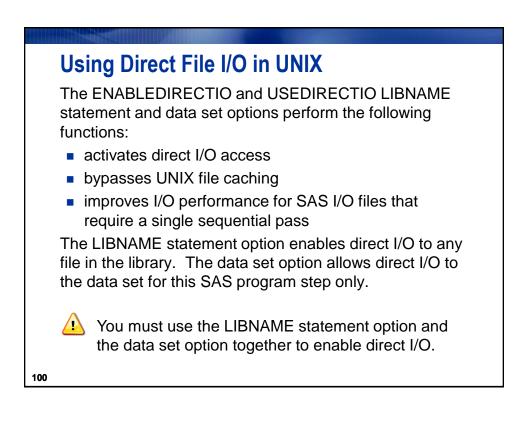

93

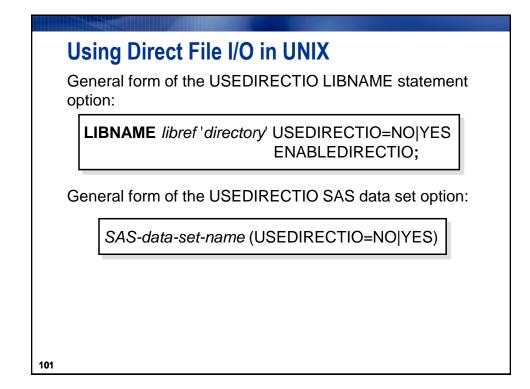

SASFILE Clibref.>member-name <(password-data-set-option(s))> OPEN | LOAD | CLOSE;


Buffer Allocation

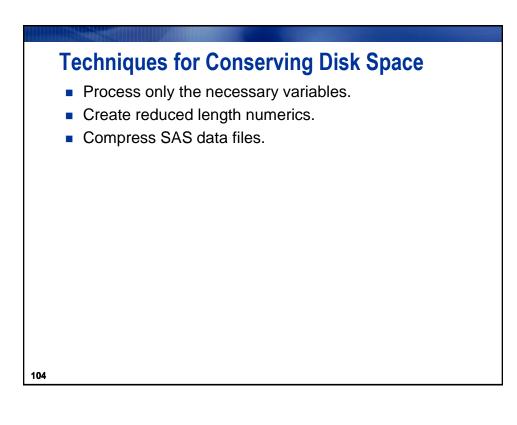

When the SASFILE statement executes, SAS allocates the number of buffers based on the number of pages of the SAS data set and index file.

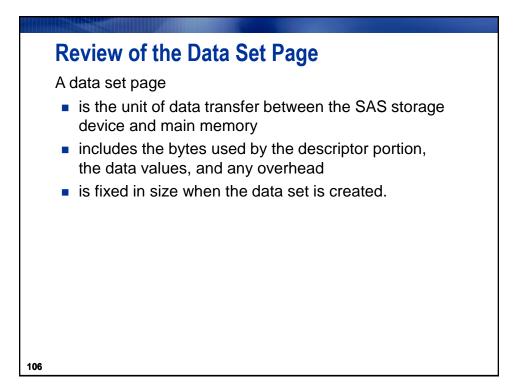
If the file in memory increases in size during processing by editing or appending data, the number of buffers also increases.

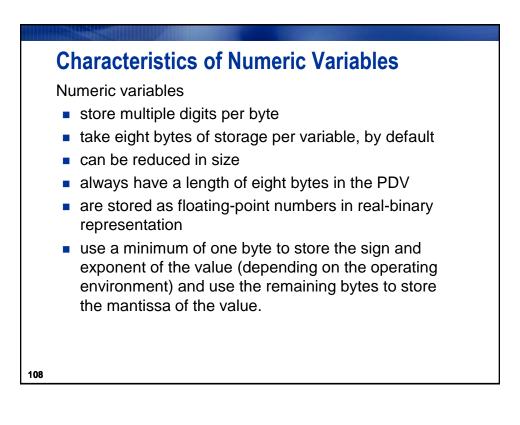


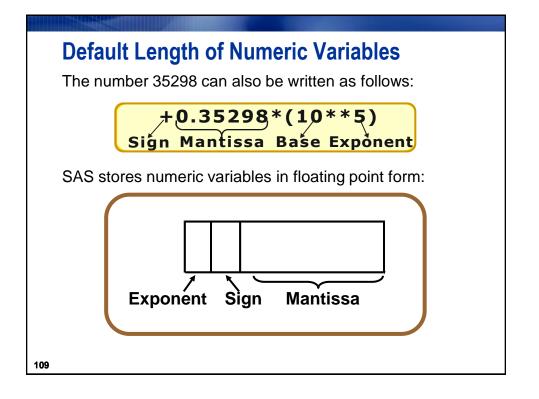


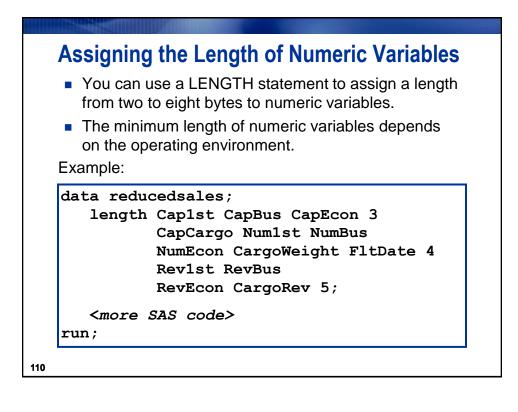
Try different values of the BUFNO system option to tune each SAS job or DATA step.










 	Descrip Portio			
				Î
				Data Portion
	Index F	ile	4	
	Index	1		
	Index	2		

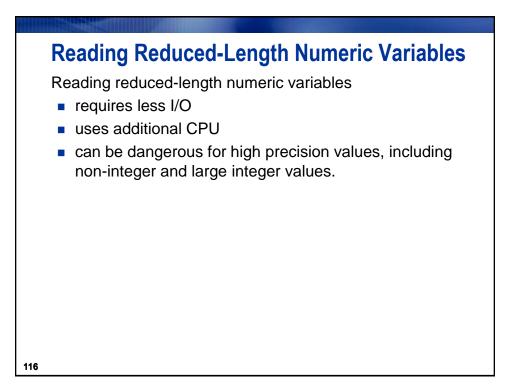
Determining Page Size wit	h PROC CONTENTS
proc contents data = work run;	.sales;
Partial Output Engine/Host Dependent Information	
Data Set Page Size Number of Data Set Pages First Data Page Max Obs per Page Index File Page Size Number of Index File Pages File Name File Name Release Created Host Created Max Obs per Page Size C:\workshop\v 9.0101M3 XP_PRO	work.sales contains 55,640,064 bytes of data in the data portion and 10,452,992 bytes for the index file. The total number of bytes is 66,093,056.

Assigning the Length of Numeric Variables

Size of	Size of	% Difference
work.sales (without index)	reducedsales	
55,640,064 bytes	37,134,336 bytes	33%

proc com	pare data = work.sales compare = work.reducedsales;
run;	
Partial Out	but
	Observation Summary
	Observation Base Compare
	First Obs 1 1 Last Obs 329264 329264
Total Number Total Number Number of Ob	servations in Common: 329264. of Observations Read from work.sales: 329264. of Observations Read from work.reducedsales: 3292 servations with Some Compared Variables Unequal: 0 servations with All Compared Variables Equal: 3292

Possible Storage Lengths for Integer Values
Windows and UNIX

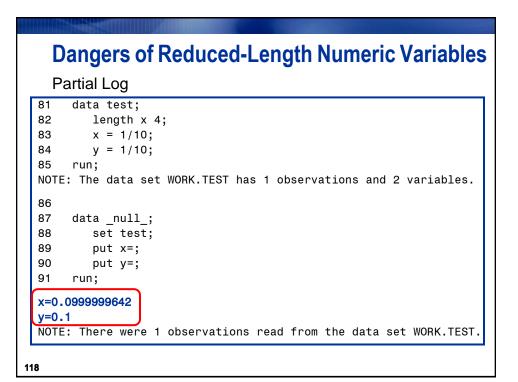

Length (bytes)	Largest Integer Represented Exactly
3	8,192
4	2,097,152
5	536,870,912
6	137,438,953,472
7	35,184,372,088,832
8	9,007,199,254,740,992

Pos z/OS	•	Lengths for Integer Valu
	Length (bytes)	Largest Integer Represented Exactly
	2	256
	3	65,536
	4	16,777,216
	5	4,294,967,296
	6	1,099,511,627,776
	7	281,474,946,710,656
	8	72,057,594,037,927,936

Assigning the Length of Numeric Variables

The use of a numeric length less than 8 bytes does the following:

- reduces the number of bytes available for the mantissa, and thus reduces the precision of the largest number that can be accurately stored
- does not affect how numbers are stored in the PDV; numbers are always eight bytes in length in the PDV
- causes the number to be truncated to the specified length when the value is written to the SAS data set
- causes the number to be expanded to eight bytes in the PDV when the data set is read by padding the mantissa with binary zeros.

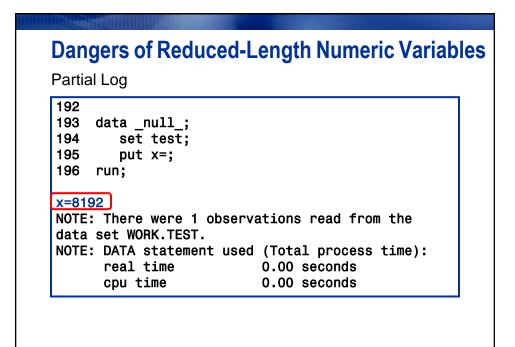


Dangers of Reduced-Length Numeric Variables

It is **not** recommended that you change the length of non-integer numeric variables.

```
data test;
    length x 4;
    x = 1/10;
    y = 1/10;
run;
data _null_;
    set test;
    put x=;
    put y=;
run;
```

```
117
```

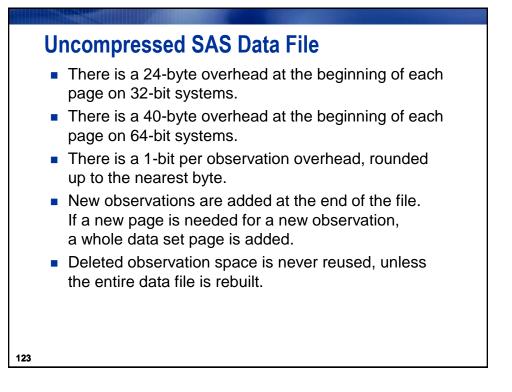


Dangers of Reduced-Length Numeric Variables

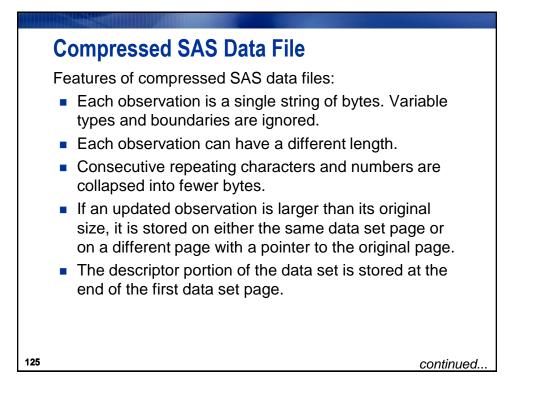
It is **not** recommended that you change the length of integer numeric variables inappropriately or that you change the length of large integer numeric variables.

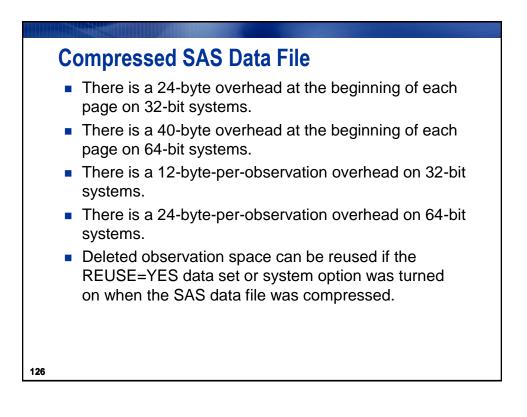
```
data test;
   length x 3;
   x = 8193;
run;
data _null_;
   set test;
   put x=;
run;
```

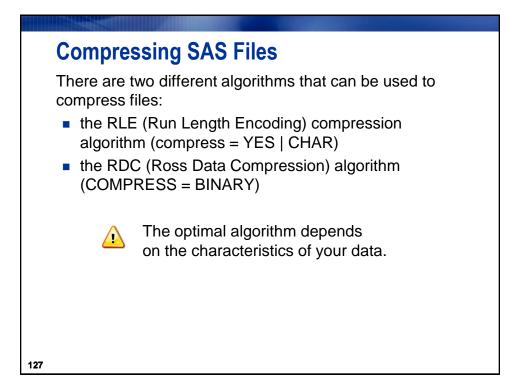
119



Simplified Uncompressed Data File Structure										
Page 1	24 / 40 byte OH	Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	*	1 bit / obs OH	Desci	riptor
Page 2	24 / 40 byte OH	Obs 6	Obs 7	Obs 8	Obs 9	Obs 10	Obs 11	Obs 12	*	1 bit / obs OH
	•	•	•	•	•	•	•			•
	•	•	•	•	•	•	•	•	•	•
Page	24 / 40 byte OH	Obs x	Obs y	Obs z	*	1 bit / obs OH				
121		1	!	1						· · · · · · ·


Uncompressed SAS Data File


The features of uncompressed SAS data files include the following:


- All observations use the same number of bytes.
- Each variable occupies the same number of bytes in every observation.
- Character values are padded with blanks.
- Numeric values are padded with binary zeros.
- The descriptor portion of the data set uses part of the first data set page.

Simplified Structure of a Compressed Data Se										Set						
Page 1	24 40 byte OH	12 24 bytes/ obs OH	*	Obs 7	с)bs 6	Ot	os 5	O b s 4	3	s (Dbs 2	O b s 1	Descri	ptor	
Page 2	24 40 byte OH	12 24 bytes/ obs OH	*	Obs 16	O b s 15	Obs	14	Obs	13	Obs 12	O b s 11	Obs 10	;	Obs 9	O b s 8	
Page	24 40 byte OH	12 24 bytes/ obs OH		*							O b s y			Obs z		
124				*	^r Ur	nuse	d sj	oac	е							

data sal	es;			
infil	e 'Sa	ales.dat';		
input	@1 I	FlightID \$7.	@ 8 1	RouteID \$7.
	@15	Origin \$3.	@ 18	Dest \$3.
	@ 21	DestType \$13.	@ 34	FltDate date9.
	@ 43	Cap1st 3.	@ 46	CapBus 3.
	@ 49	CapEcon 3.	@ 52	CapPassTotal 3.
	@55	CapCargo 6.	@ 61	Num1st 3.
	@ 64	NumBus 3.	@ 67	NumEcon 3.
	@ 70	NumPassTotal 3.	@ 73	Rev1st 7.
	@ 80	RevBus 7.	@ 87	RevEcon 7.
	@ 94	CargoRev 8.	@ 10 2	2 RevTotal 10.
	@112	CargoWeight 5.;	;	

Creating a Compressed Data File

<pre>infile 'Sales.dat'; input @1 FlightID \$7. @8 RouteID \$7. @15 Origin \$3. @18 Dest \$3. @21 DestType \$13. @34 FltDate date9. @43 Cap1st 3. @46 CapBus 3. @49 CapEcon 3. @52 CapPassTotal 3. @55 CapCargo 6. @61 Num1st 3. @64 NumBus 3. @67 NumEcon 3. @70 NumPassTotal 3. @73 Rev1st 7. @80 RevBus 7. @87 RevEcon 7. @94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.; run;</pre>	data saleschar(compress = ch	har);
<pre>@15 Origin \$3. @18 Dest \$3. @21 DestType \$13. @34 FltDate date9. @43 Cap1st 3. @46 CapBus 3. @49 CapEcon 3. @52 CapPassTotal 3. @55 CapCargo 6. @61 Num1st 3. @64 NumBus 3. @67 NumEcon 3. @70 NumPassTotal 3. @73 Rev1st 7. @80 RevBus 7. @87 RevEcon 7. @94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.;</pre>		
 @21 DestType \$13. @34 FltDate date9. @43 Cap1st 3. @46 CapBus 3. @49 CapEcon 3. @52 CapPassTotal 3. @55 CapCargo 6. @61 Num1st 3. @64 NumBus 3. @67 NumEcon 3. @70 NumPassTotal 3. @73 Rev1st 7. @80 RevBus 7. @87 RevEcon 7. @94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.; 	input @1 FlightID \$7.	@8 RouteID \$7.
@43 Cap1st 3. @46 CapBus 3. @49 CapEcon 3. @52 CapPassTotal 3. @55 CapCargo 6. @61 Num1st 3. @64 NumBus 3. @67 NumEcon 3. @70 NumPassTotal 3. @73 Rev1st 7. @80 RevBus 7. @87 RevEcon 7. @94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.;	@15 Origin \$3.	@18 Dest \$3.
@49 CapEcon 3. @52 CapPassTotal 3. @55 CapCargo 6. @61 Num1st 3. @64 NumBus 3. @67 NumEcon 3. @70 NumPassTotal 3. @73 Rev1st 7. @80 RevBus 7. @87 RevEcon 7. @94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.;	@21 DestType \$13.	@34 FltDate date9 .
@55 CapCargo 6. @61 Num1st 3. @64 NumBus 3. @67 NumEcon 3. @70 NumPassTotal 3. @73 Rev1st 7. @80 RevBus 7. @87 RevEcon 7. @94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.;	@43 Cap1st 3 .	@46 CapBus 3.
@64 NumBus 3. @67 NumEcon 3. @70 NumPassTotal 3. @73 Rev1st 7. @80 RevBus 7. @87 RevEcon 7. @94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.;	@49 CapEcon 3.	<pre>@52 CapPassTotal 3</pre>
<pre>@70 NumPassTotal 3. @73 Rev1st 7. @80 RevBus 7. @87 RevEcon 7. @94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.;</pre>	<pre>@55 CapCargo 6.</pre>	@61 Num1st 3 .
<pre>@80 RevBus 7. @87 RevEcon 7. @94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.;</pre>	@64 NumBus 3.	@67 NumEcon 3.
<pre>@94 CargoRev 8. @102 RevTotal 10. @112 CargoWeight 5.;</pre>	@70 NumPassTotal 3.	. @73 Rev1st 7.
@112 CargoWeight 5.;	@80 RevBus 7.	@87 RevEcon 7 .
	094 CargoRev 8.	@102 RevTotal 10.
run;	<pre>@112 CargoWeight 5.</pre>	;
	run;	

Partial Log
NOTE: The data set WORK.SALESCHAR has 329264 observations and 21 variables. NOTE: Compressing data set WORK.SALESCHAR decreased size by 28.14 percent. Compressed is 4930 pages; un-compressed would require 6861 pages. NOTE: DATA statement used (Total process time): real time 17.36 seconds cpu time 3.25 seconds
130

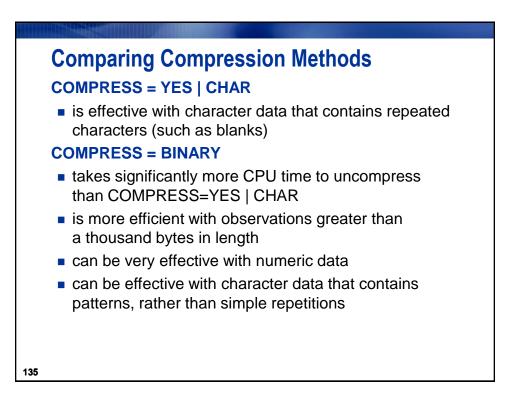
Creating a Compressed Data File

	e 'Sales.dat'; 2 @1 FlightID \$7.	@8 RouteID \$7 .
	@15 Origin \$3.	
	@21 DestType \$13.	
	@43 Cap1st 3.	@46 CapBus 3.
	@49 CapEcon 3.	<pre>@52 CapPassTotal 3</pre>
	<pre>@55 CapCargo 6.</pre>	@61 Num1st 3.
	@64 NumBus 3.	@67 NumEcon 3.
	@70 NumPassTotal 3.	@73 Rev1st 7.
	@80 RevBus 7.	@87 RevEcon 7.
	@94 CargoRev 8.	@102 RevTotal 10.
	<pre>@112 CargoWeight 5.</pre>	;
run;		

Dertial Log
Partial Log
NOTE: The data set WORK.SALESBIN has 329264 observations and 21
variables. NOTE: Compressing data set WORK.SALESBIN decreased size by 31.51 percent.
Compressed is 4699 pages; un-compressed would require 6861 pages. NOTE: DATA statement used (Total process time):
real time 7.04 seconds cpu time 3.62 seconds
132

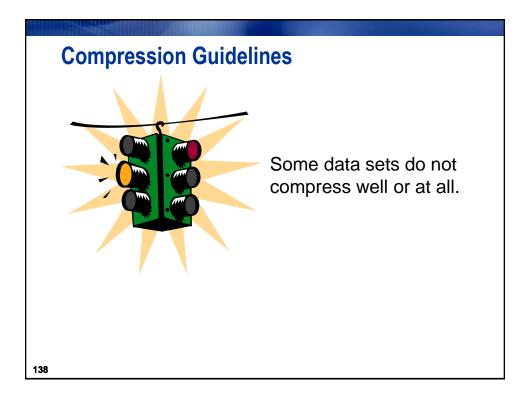
Data Set	Algorithm Used	Number of Bytes	Decreased size
sales	none	55,623,680	
saleschar	CHAR	40,386,560	28.14%
salesbin	BINARY	38,494,208	31.51%

133


Creating a Compressed Data File

To create a compressed data file, use the COMPRESS= output data set option or system option.

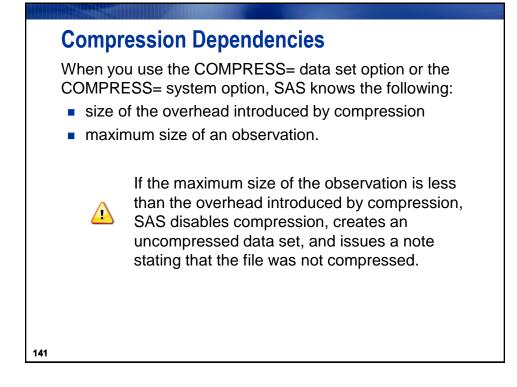
General forms of the COMPRESS= options:


SAS-data-set(COMPRESS = NO | YES | CHAR | BINARY)

OPTIONS COMPRESS = NO | YES | CHAR | BINARY;

How	SAS Comp	oresses Data	a	
	• a file has these			
	Name	Туре	Length	
	LastName	Character	20	
	FirstName	Character	15	
	compressed for ese two variable		ions use 35 byte	es
LastNa	ame	Fii	rstName	
0 1 A D A	MS	² ₀	I L L	
136				

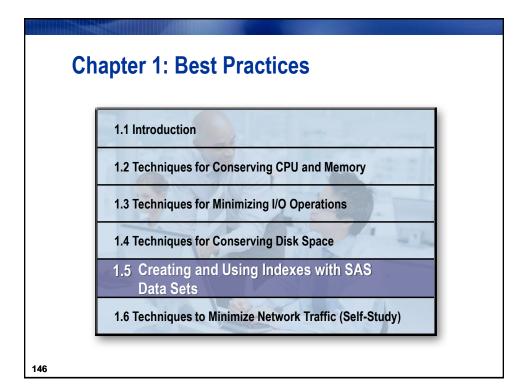
			ESS =						
			•		uses bot ression.	h run-	len	gth en	coding
		-	has the	-					
	Na	me		Туре		Leng	jth		
	An	swe	∍r1	Nume	eric	8			
	•	••							
	An	swe	≥r200	Nume	eric	8			
In u	nco	mp	ressed f	ⁱ orm, tł	ne data fi	le rese	emt	oles th	is:
0bs	answ	er1	answer2	answer	3 answer4	answ	er5		answer200
1	[1	2	1	2		1		2
2	[1	1	1	1		1		1
3	ſ	2	2	2	2 2		2		2

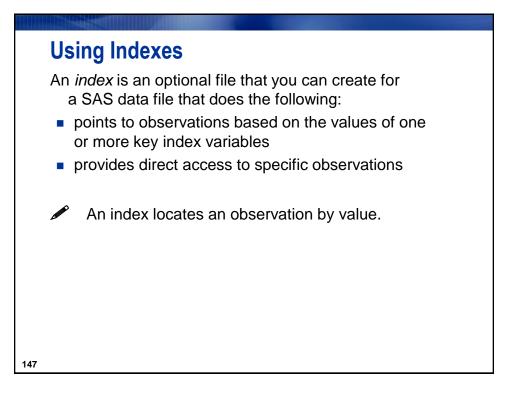

Compression Dependencies

Because there is higher overhead for each observation, a data file can occupy more space in compressed form than in uncompressed form if the file has the following:

- few repeated characters
- small physical size
- few missing values
- short text strings

Compression Guidelines data work.capacity ch(compress = yes); set work.capacity; run; Partial Log data capacity_ch(compress = yes); 1175 1176 set work.capacity; 1177 run; NOTE: There were 108 observations read from the data set WORK.CAPACITY. NOTE: The data set WORK.CAPACITY_CH has 108 observations and 7 variables. NOTE: Compressing data set WORK. CAPACITY increased size by 50.00 percent. Compressed is 3 pages; un-compressed would require 2 pages. NOTE: DATA statement used (Total process time): real time 0.00 seconds cpu time 0.01 seconds

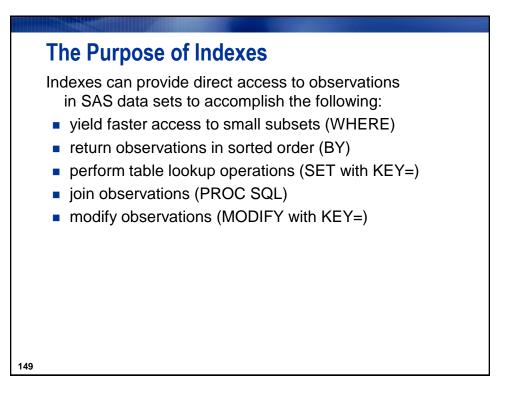


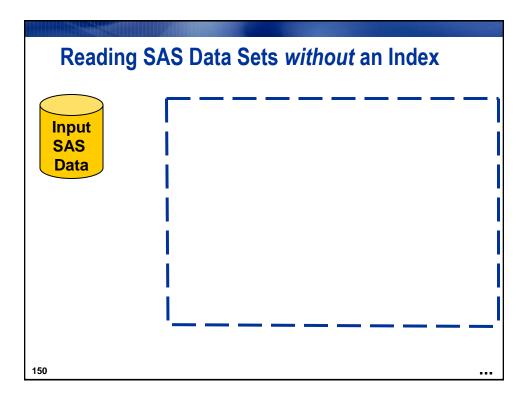

	data test(compress	= yes);
2	x = 1;	
3	run;	
NOTE	Compression was d	isabled for data set
NOTE:		compression overhead would
	increase the size	•
NOTE:		.TEST has 1 observations and
	1 variables.	
NOTE:	DATA statement us	ed:
	real time	0.51 seconds
	cpu time	0.10 seconds

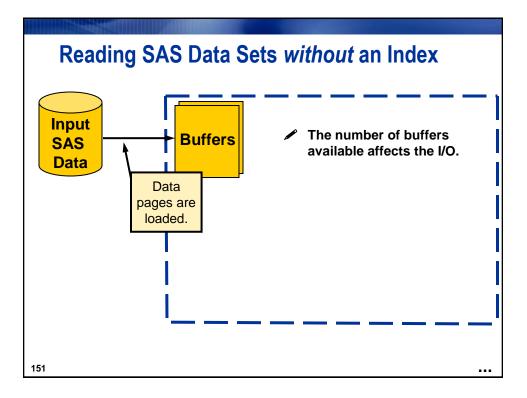
Uncompressed	Compressed		
Usually requires more disk storage.	Usually requires less disk storage.		
Requires less CPU time to prepare observation for I/O.	Requires more CPU time to prepare observation for I/O.		
Uses more I/O operations.	Uses fewer I/O operations.		
The savings in I/O o greatly outweighs the in CPU time	e increase		

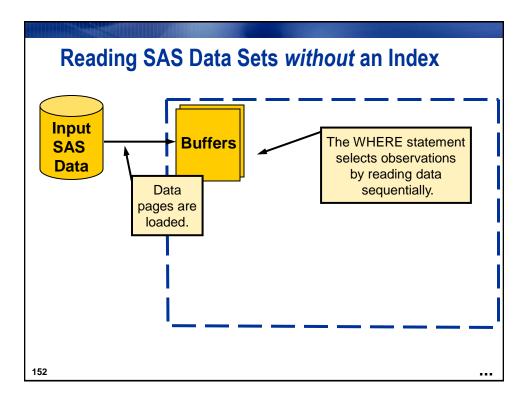
Uncompressed	Compressed
An updated observation fits in its original location.	An updated observation might be moved from its original location.
Deleted observation space is never reused.	Deleted observation space can be reused.
New observations are always inserted at the end of the data file.	When REUSE=YES, new observations might not be inserted at the end of the data file.

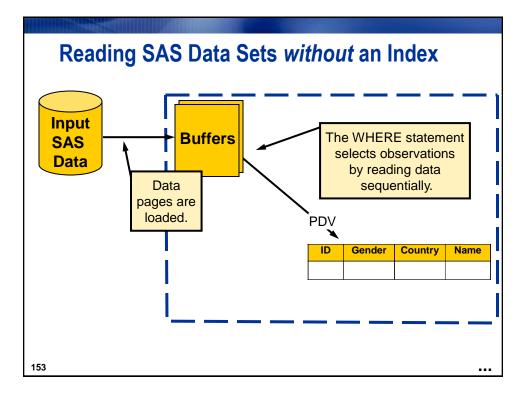
Simplified Index File

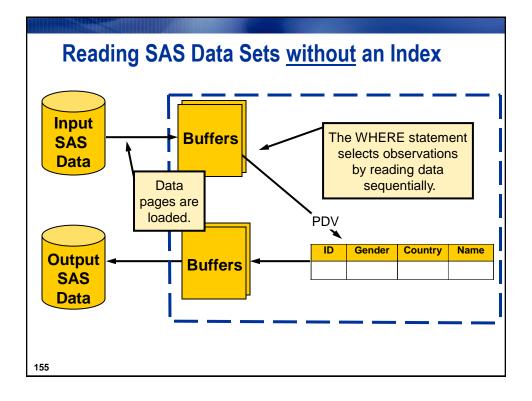

The index file consists of entries that are organized in a tree structure and connected by pointers.

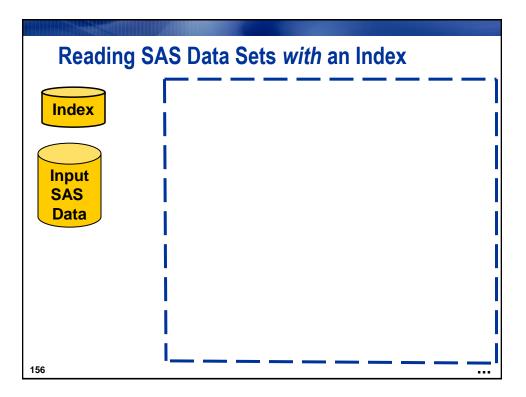

Partial Listing of work.sales

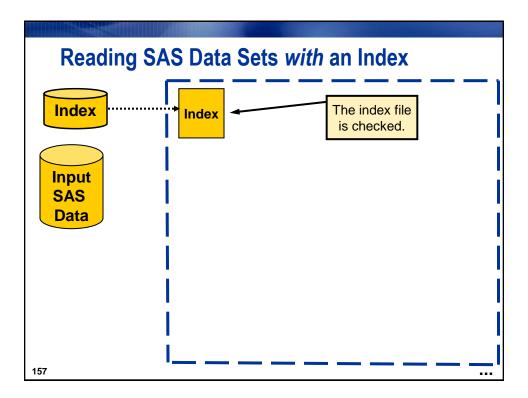

Customer_ID Employee_ID

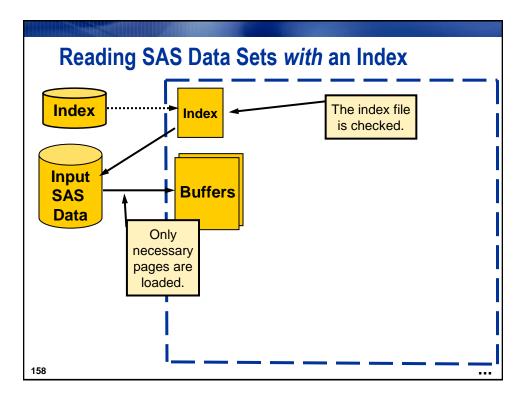

Simplified Index

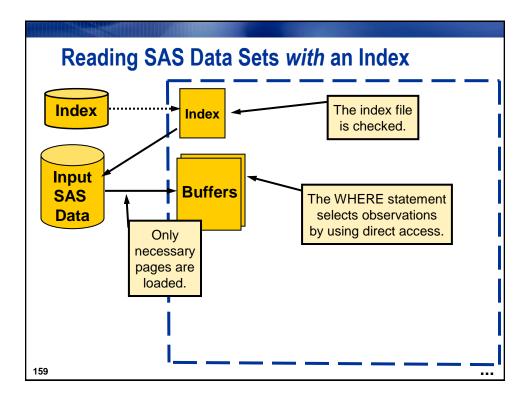

Customer_ID Key Value	Record Identifier (RID) Page(obs, obs,)
4006	17 (85)
4021	17(89)
4059	17(90)
4063	17(80, 86)
•	
•	
14958	1(1, 24)
14972	1(14)
· ·	

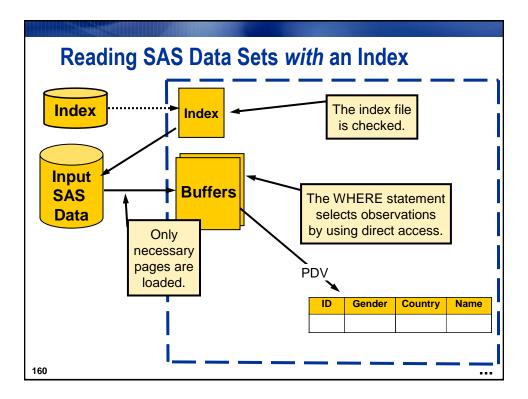


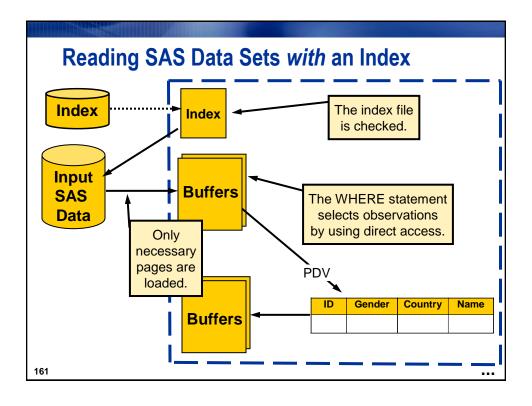


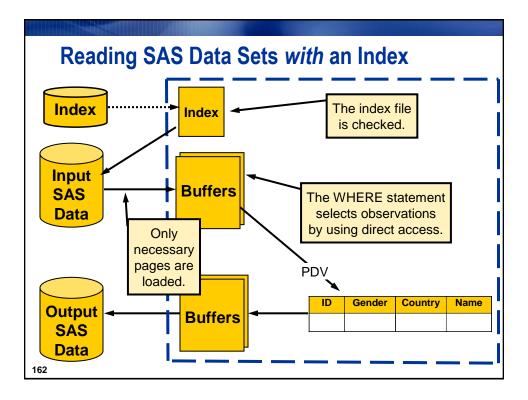


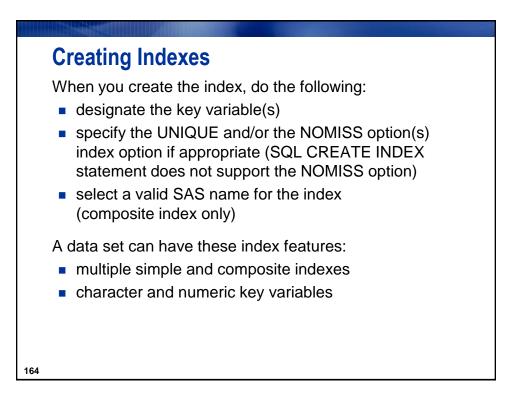


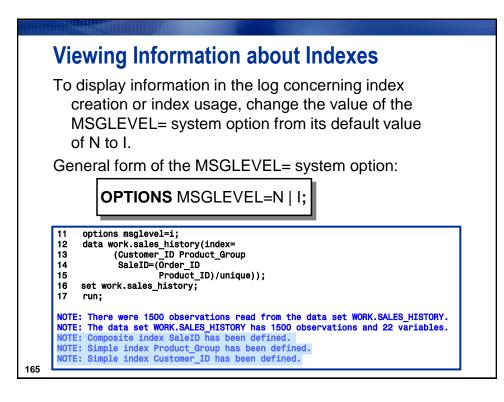









Creating Indexes

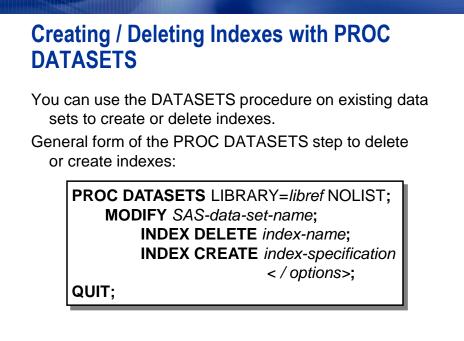

To create indexes at the same time that you create a data set, use the INDEX= data set option on the output data set.

To create or delete indexes on existing data sets, use one of the following:

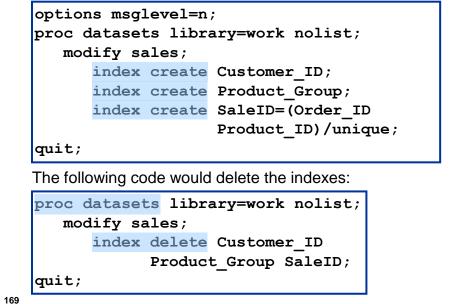
- DATASETS procedure
- SQL procedure

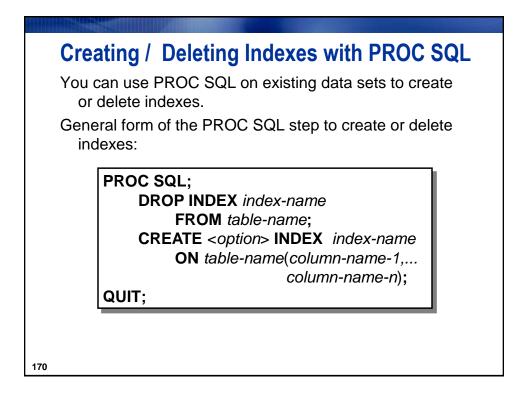
163

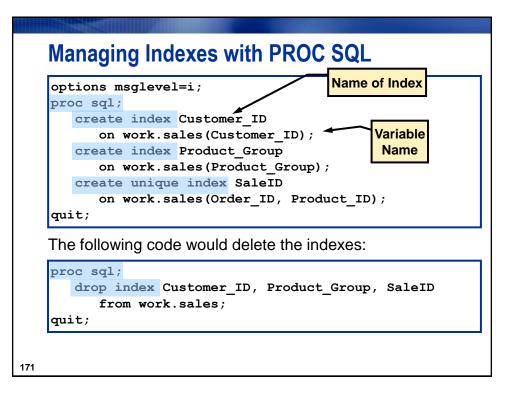
SAS-data-file-name (INDEX =

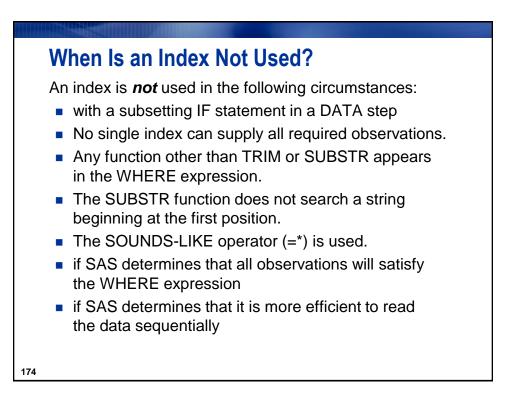

(index-specification-1</option> </option><index-specification-n</option> </option> >));

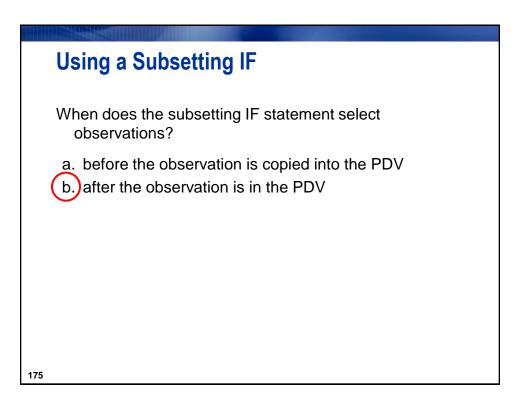
For increased efficiency, use the INDEX= option to create indexes when you initially create a SAS data set.

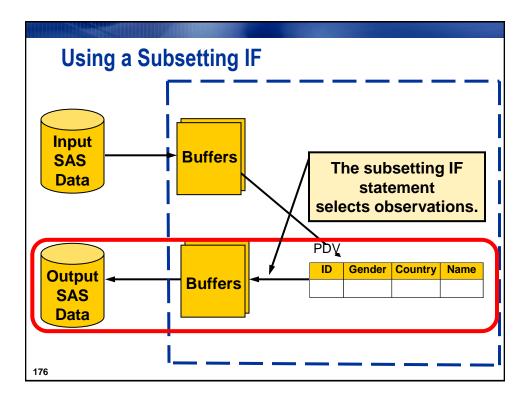

Creating an Index with the INDEX= Data Set Option

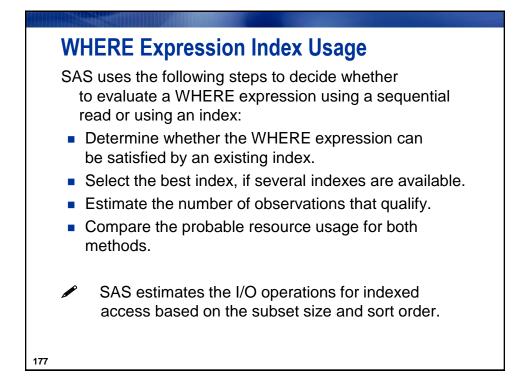

The following code would delete the indexes:

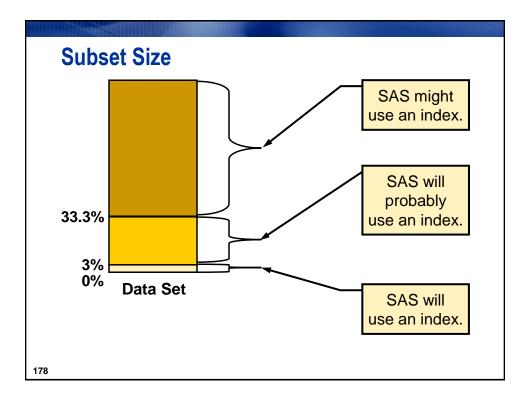

data work.sales; set work.sales; run;

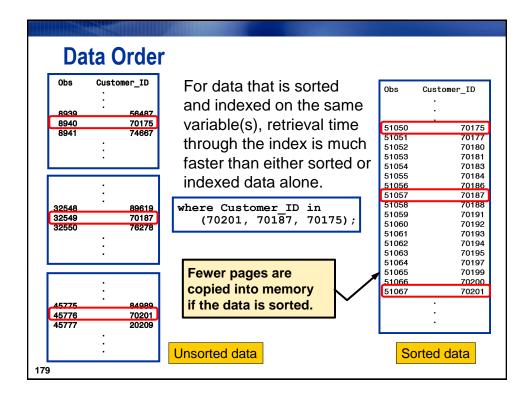


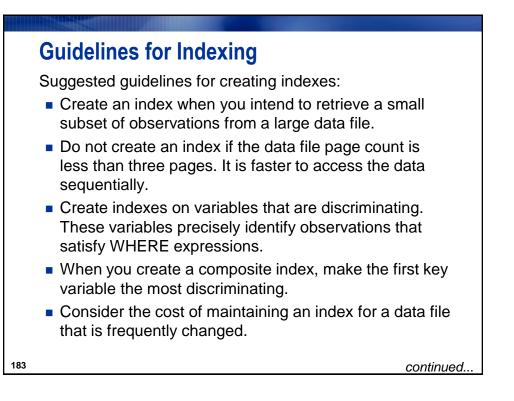

Comparing Techniques for Index Creation		
INDEX= Data Set Option	PROC DATASETS	PROC SQL
You can create the SAS data set at the same time that the index is created.	You can only create indexes on existing SAS data sets and existing variables.	You can only create indexes on existing SAS data sets and existing variables.
To create an additional index, you must re-create the existing indexes.	Additional indexes can be created without re-creating the original indexes.	Additional indexes can be created without re-creating the original indexes.
The DATA step can perform data manipulation at the same time that the index is created.	PROC DATASETS cannot perform data manipulation.	The CREATE INDEX statement cannot perform data manipulation.
To delete one or more indexes, you must re-create the other required indexes.	One or more indexes can be deleted without deleting all of the indexes on the data set.	One or more indexes can be deleted without deleting all of the indexes on the data set.
An existing index can be re- created without first deleting it.	If an index exists, it must be deleted before it can be recreated.	If an index exists, it must be deleted before it can be re- created.
72		

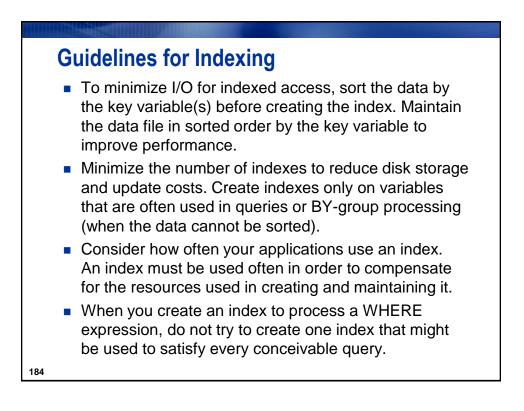

Index Usage Possible


- A WHERE condition might possibly use an index, provided the condition contains any one of the following:
- a comparison operator or the IN operator
- the NOT operator
- the special WHERE operators (CONTAINS, LIKE, IS NULL IS MISSING, and BETWEEN...AND)
- the TRIM or SUBSTR functions (*if* the second argument of the SUBSTR function is 1)


173

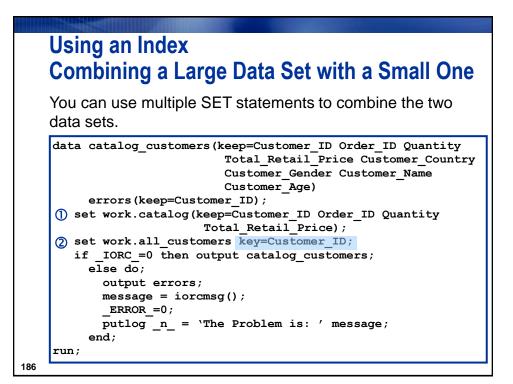


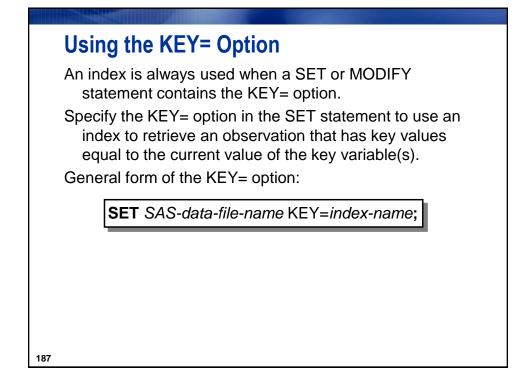



Copy the data set with the COPY procedure or the DATASETS procedure	Index file constructed for new data file
Move the data set with the MOVE option in the COPY procedure	Index file deleted from IN= library; rebuilt in OUT= library
Copy the data set with a drag-and-drop action in SAS Explorer	Index file constructed for new file

Maintaining	Indexes

Data Management Tasks	Index Action Taken
Rename the data set	Index file renamed
Rename the variable	Variable renamed to new name in index file
Add observations	Value/Identifier pairs added
Delete observations	Value/Identifier pairs deleted; space recovered for re-use
Update observations	Value/Identifier pairs updated if values change
The APPEND procedure statement in the SQL pr file after all the data is a	ocedure update the index

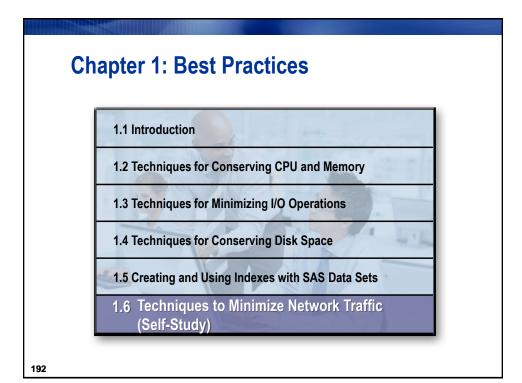

Maintaining Indexes	
Data Management Tasks	Index Action Taken
<pre>Delete a data set. proc datasets lib=work; delete a; run;</pre>	Index file deleted
Rebuild a data set with a DATA step or the SQL procedure. data a; proc sql; set a; create table a as run; select * from a; quit;	Index file deleted
Sort the data set in place with the FORCE option in the SORT procedure. proc sort data=a force; by var; run;	Index file deleted

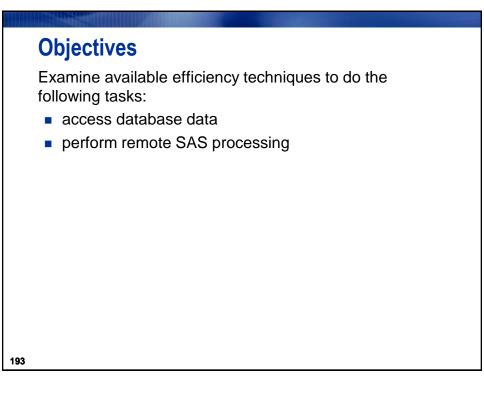


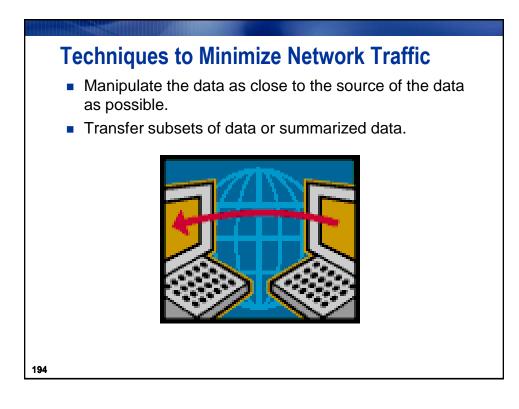
Index ⁻	Trad	o_offe
ΠΠΩΈΧ	iiau	C-0112

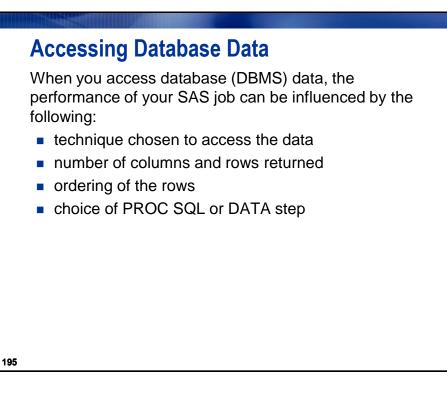
Advantages	Disadvantages
fast access to a small subset of observations	extra CPU cycles and I/O operations to create and maintain an index
values returned in sorted order	increased CPU to read the data
can enforce uniqueness	extra disk space to store the index file
	extra memory to load the index pages and the compiled SAS C code to use the index

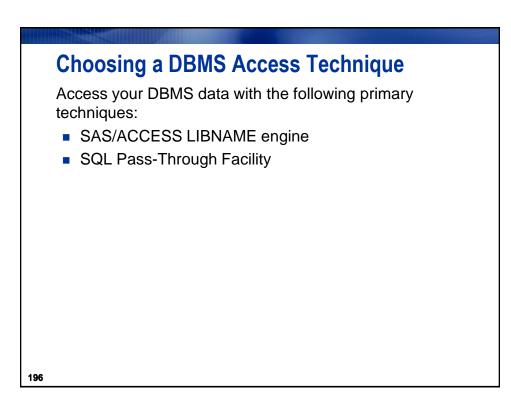
	Using the _IORC_ Automatic Variable		
	When you use the KEY= option, SAS creates an automatic variable named _IORC_, which is an acronym for input/output return code.		
	You can use the value of _IORC_ to determine whether the search of the index was successful.		
	IORC=0	indicates that SAS found a matching observation.	
	IORC ne 0	indicates that the SET statement did not successfully execute. One possible cause is that SAS did <i>not</i> find a matching observation.	
188			

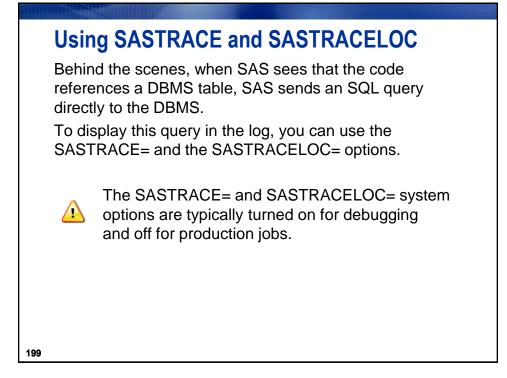

Be Careful When Outputting Data

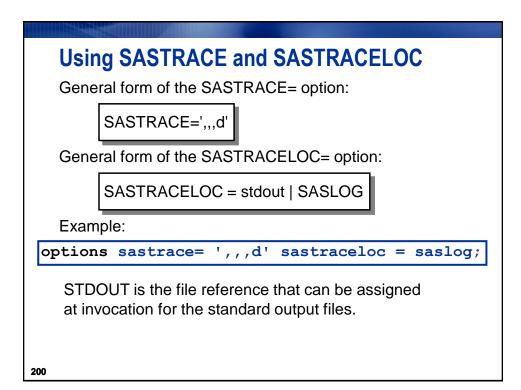

- Data from the previous observation is retained in the PDV as data coming into the Data Step from a SAS data set does not reinitialize at the start of a new iteration of the Data Step. Thus, if an error occurs in reading a record via index processing, then the previous record's data remains in the PDV.
- If an index read error does occur, you can use the IORCMSG() Data Step function to see a more descriptive message why the error occurred.

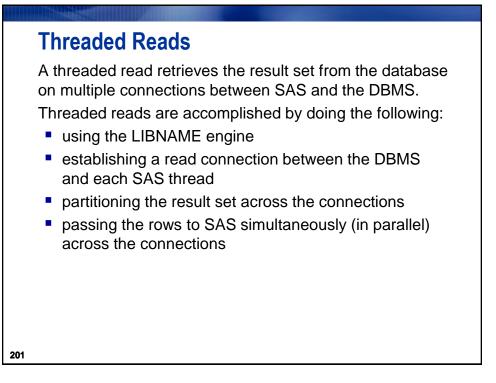

189

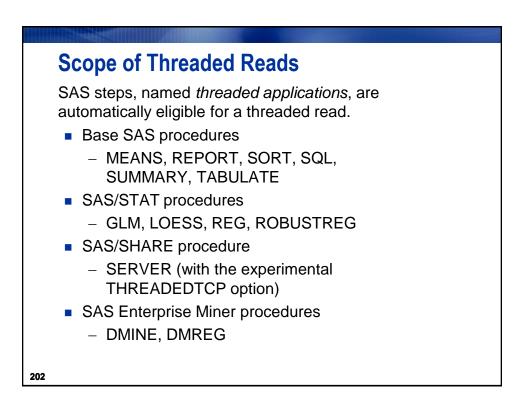

Using an Index Combining a Large Data Set with a Small One You can use multiple SET statements to combine the two data sets. data catalog customers(keep=Customer ID Order ID Quantity Total Retail Price Customer Country Customer_Gender Customer_Name Customer Age) errors(keep=Customer_ID); () set work.catalog(keep=Customer ID Order ID Quantity Total Retail Price); (2) set work.all customers key=Customer ID; if IORC =0 then output catalog customers; else do; output errors; message = iorcmsg(); ERROR =0; putlog n = `The Problem is: ' message; end; run;

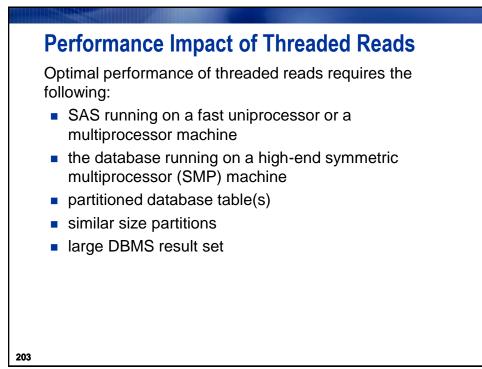


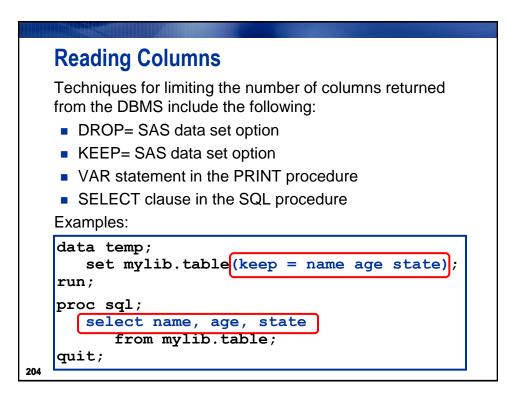

LIBNAME Engine Advantages

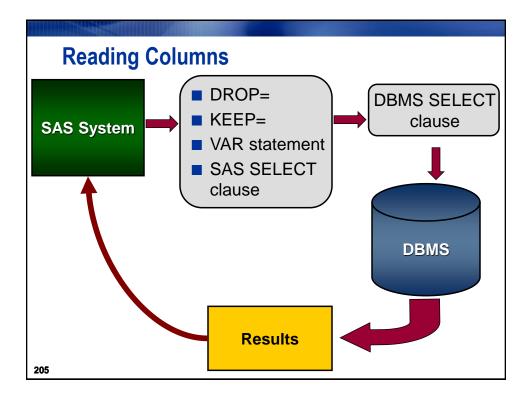

DATA and PROC step features:

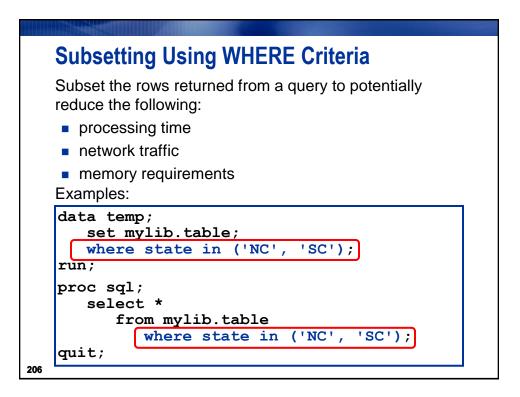

- You can take advantage of threaded reads.
- The WHERE clause can be passed to DBMS.
- Sort requests can be passed to DBMS.
- Transparent access to DBMS data occurs.
- DATA and PROC step syntax is unchanged.
- Knowledge of DBMS-specific SQL is unnecessary.
- Data retrieval results can be saved as a SAS table or a view.

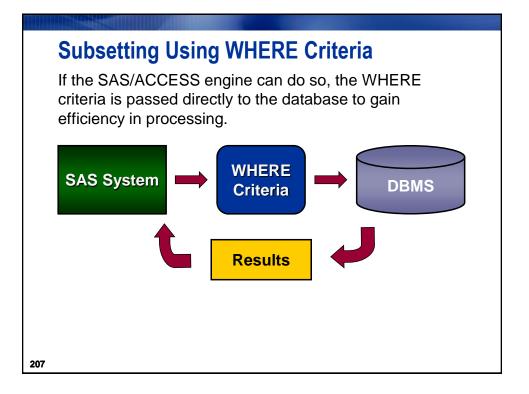


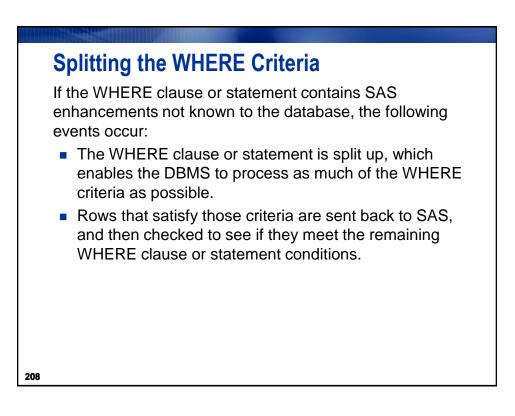


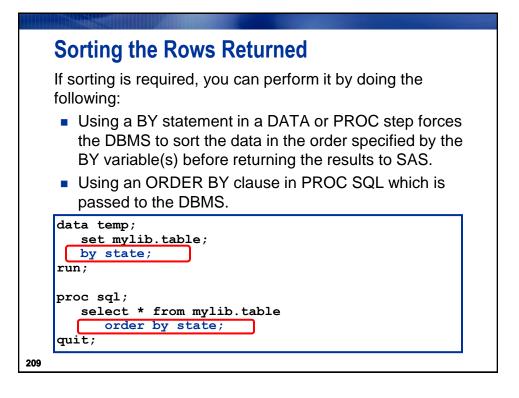


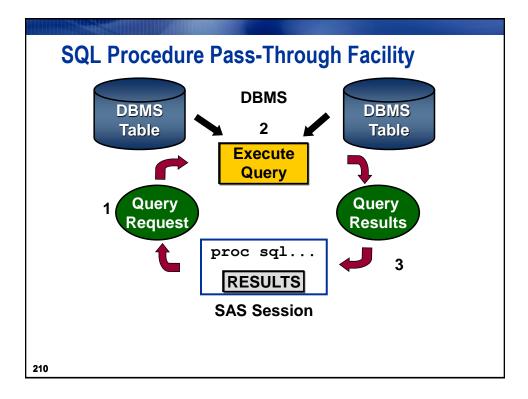


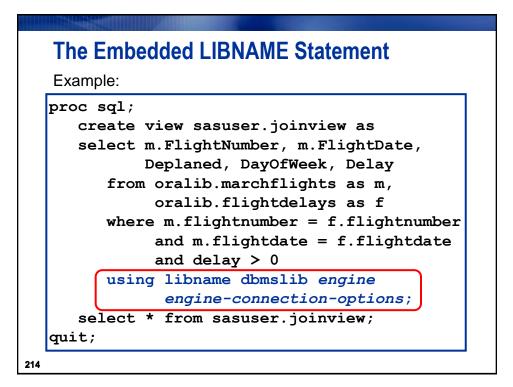








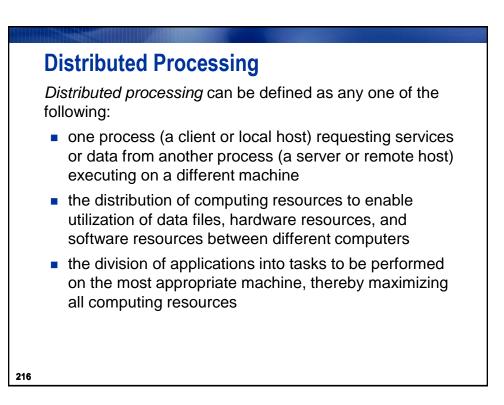


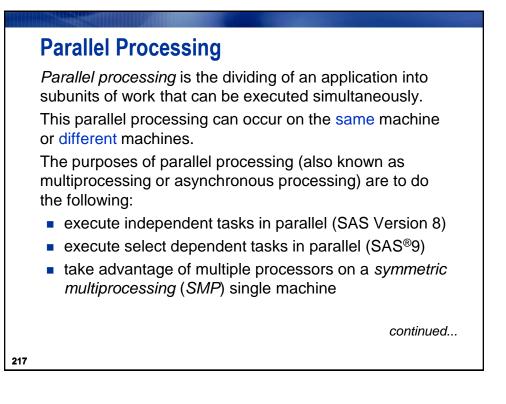


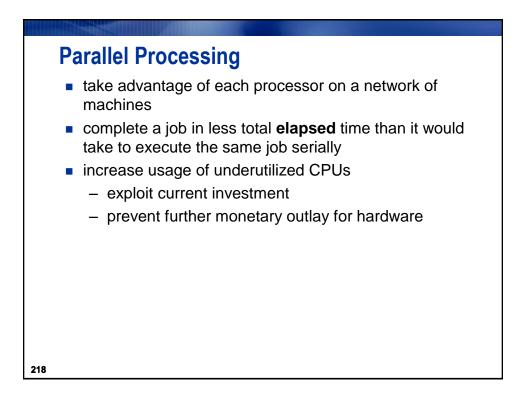
SQL Pass-Through Advantages

- DBMS can optimize all table joins.
- Results of a query can be saved as a SAS data file.
- A SAS SQL view can contain a pass-through query.

```
211
```

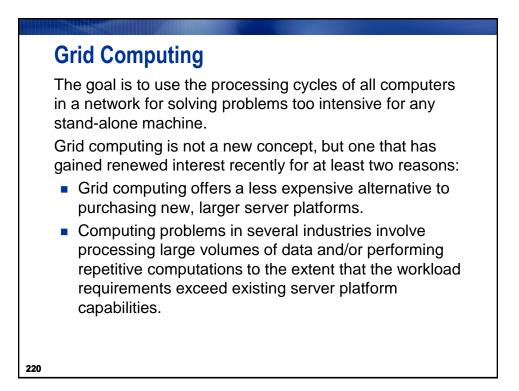

The Embedded LIBNAME Statement or using the SQL Pass-Through Facility when you create a PROC SQL view is the embedded LIBNAME statement. The embedded LIBNAME statement has these characteristics: is defined in a USING clause within the PROC SQL view is assigned when the view begins to execute can contain connection information uses the LIBNAME engine to access the DBMS can store label, format, and alias information is de-assigned when the view completes executing




SAS/ACCESS Summary

The SAS/ACCESS LIBNAME engine enables transparent access to your DBMS tables. As much code as possible is passed behind the scenes by SAS to the DBMS for processing in order to optimize performance.

The SQL Pass-Through Facility enables the programmer to control the native DBMS SQL queries that are passed to the database to execute.

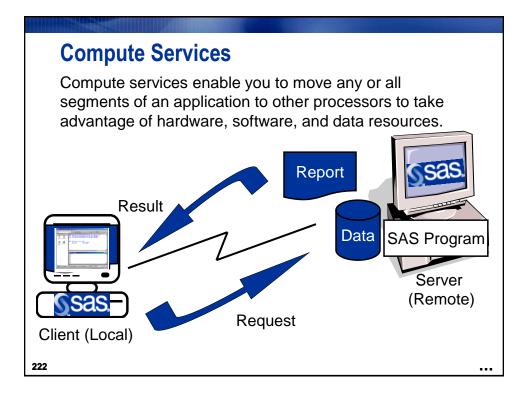

Grid Computing

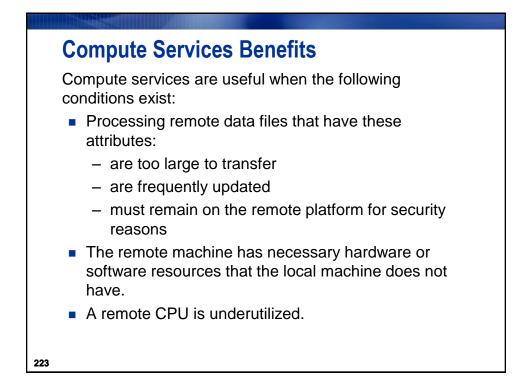
A *computing grid* is a collection of multiple computers that solve one application problem.

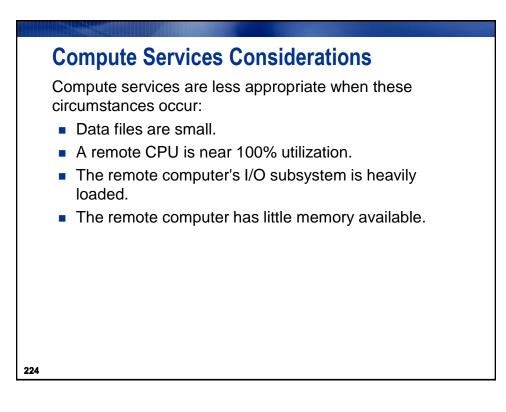
The concept of grid computing is to tap into the unused processor cycles of computers hooked up to a network to solve problems that require a massive amount of processing power and deal with vast amounts of data.

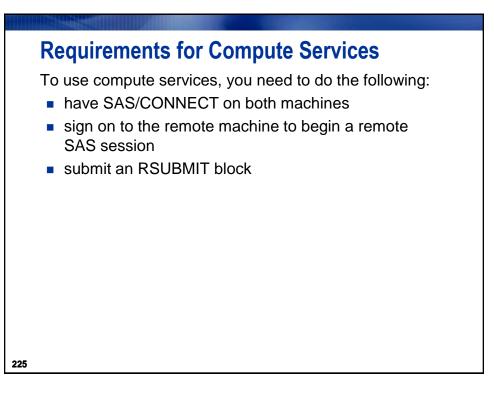
The idea of grid computing is that any device or computer could hook into a network and make use of the collective unused power of every device on the network or grid.

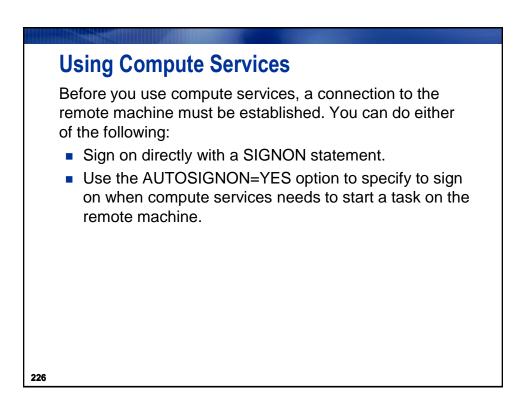
continued...

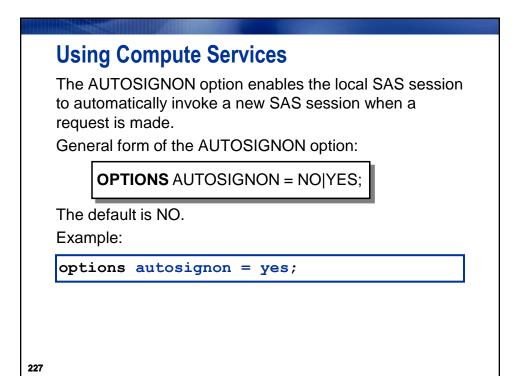

Distributed Processing Solutions

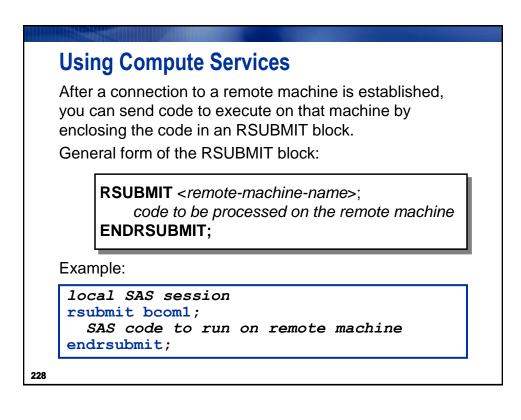

A distributed processing solution is implemented when an application requires a service from another computer or itself.


Services include the following:

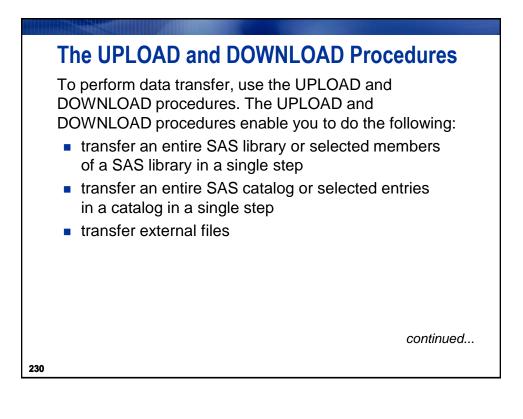

- compute services
- data transfer services
- remote library services (RLS)

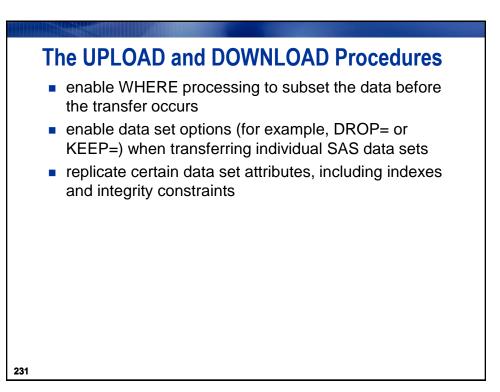


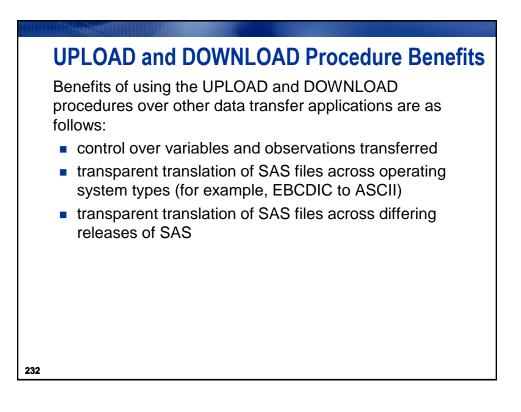


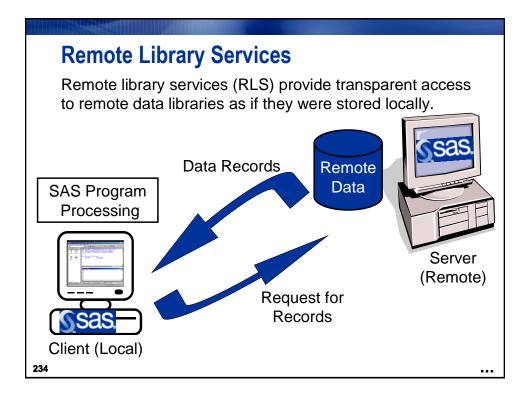




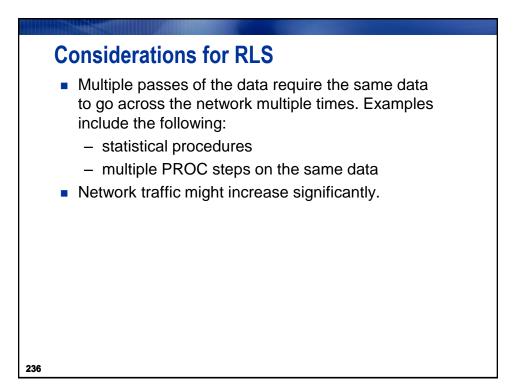








Transferring a SAS Data Library


Example: Transfer the entire SAS data library on the remote machine to the local machine.


run; endrsubmit;

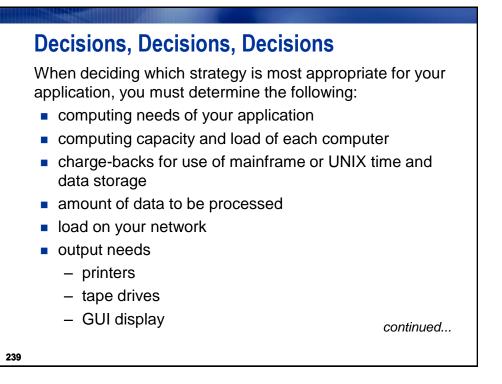
Benefits of RLS

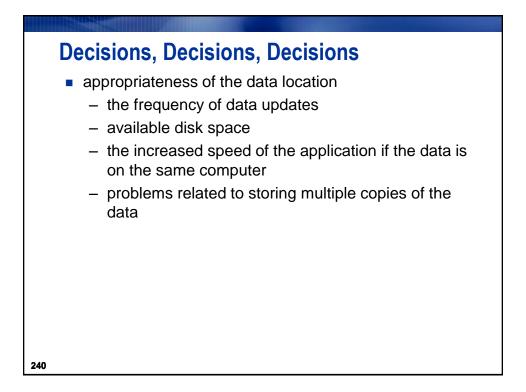
- A single copy of the data can be maintained while processing is performed on the local machine.
- The data appears to be local.
- RLS enables updates to remote data as a result of local processing.
- RLS permits a user interface to reside on the local system while the data is on a remote system.

SERVER= Option

General form of the SERVER= option in the LIBNAME statement:

LIBNAME libref 'SAS-data-library' | SLIBREF=server-libref SERVER=remote-host;


Examples:


Access a library stored on your user ID on UNIX:

```
libname rmtunx '/orion/sasdata' server = sdcunx;
```

Access the Work library on z/OS:

libname rmtwork slibref = work server = sdcmvs;

