
Best Practices Using

BASE SAS Software

June 27, 2012

1

Best Practices Using
BASE SAS® Software

2 2

Chapter 1: Best Practices

1.1 Introduction

1.2 Techniques for Conserving CPU and Memory

1.3 Techniques for Minimizing I/O Operations

1.4 Techniques for Conserving Disk Space

1.5 Creating and Using Indexes with SAS Data Sets

1.6 Techniques to Minimize Network Traffic (Self-Study)

Best Practices Using

BASE SAS Software

June 27, 2012

2

3

What Are Best Practices?
Best practices can reduce usage of the following five

critical system resources to improve performance:

 CPU

 I/O

 Disk Space

 Memory

 Data Storage Space

3

Reducing one resource often increases another.

4

Deciding What Is Important for Efficiency

4

Your Site

Your Programs

Your Data

Best Practices Using

BASE SAS Software

June 27, 2012

3

5

Understanding Efficiency at Your Site

5

SAS Environment

Hardware Operating Environment

System Load

6

Knowing How Your Program Will Be Used
The importance of efficiency increases with the following:

 the complexity of the program or the size of the files

being processed

 the number of times that the program will be executed

6

Best Practices Using

BASE SAS Software

June 27, 2012

4

7

Knowing Your Data

7

8

Considering Trade-Offs
In this seminar, many tasks are performed using one or

more techniques.

To decide which technique is most efficient for a given

task, benchmark (measure and compare) the resource

usage of each technique.

You should benchmark with the actual data to determine

which technique is the most efficient.

8

The effectiveness of any efficiency technique

depends greatly on the data with which you use

the technique.

Best Practices Using

BASE SAS Software

June 27, 2012

5

9

Running Benchmarks: Guidelines
To benchmark your programming techniques, do the

following:

 Turn on the appropriate options to report resource

usage.

 Test each technique in a separate SAS session.

 Test only one technique or change at a time, with as

little additional code as possible.

 Run your tests under the conditions that your final

program will use (for example, batch execution, large

data sets, and so on).

9 continued...

10

Running Benchmarks: Guidelines
 Run each program several times and base your

conclusions on averages, not on a single execution.

(This is even more critical when you are benchmarking

elapsed time.)

 Exclude outliers from the analysis because that data

might lead you to tune your program to run less

efficiently than it should.

 Turn off the options that report resource usage after

testing is finished, because they consume resources.

10

Best Practices Using

BASE SAS Software

June 27, 2012

6

11 11

Tracking Resource Usage

SAS

options

STIMER

STATS

(z/OS only)

MEMRPT

(z/OS only)

FULLSTIMER

12 12

Tracking Resources with SAS Options

OPTIONS NOFULLSTIMER | FULLSTIMER;

OPTIONS STIMER | NOSTIMER;

OPTIONS STATS | NOSTATS;

OPTIONS MEMRPT | NOMEMRPT;

z/OS only

Windows, UNIX, and z/OS

Invocation or

configuration file only

on z/OS

Best Practices Using

BASE SAS Software

June 27, 2012

7

13

Sample Windows Log
Partial SAS Log

5 options fullstimer;
6 data _null_;
7 length var $ 30;
8 retain var2-var50 0 var51-var100 'ABC';
9 do x=1 to 100000000;
10 var1=10000000*ranuni(x);
11 if var1>1000000 then var='Greater than 1,000,000';
12 if 500000<=var1<=1000000 then var='Between 500,000 and 1,000,000';
13 if 100000<=var1<500000 then var='Between 100,000 and 500,000';
14 if 10000<=var1<100000 then var='Between 10,000 and 100,000';
15 if 1000<=var1<10000 then var='Between 1,000 and 10,000';
16 if var1<1000 then var='Less than 1,000';
17 end;
18 run;

NOTE: DATA statement used (Total process time):
 real time 1.26 seconds
 user cpu time 0.98 seconds
 system cpu time 0.04 seconds
 Memory 278k
 OS Memory 4976k
 Timestamp 6/29/2010 12:39:21 PM

19 options nofullstimer;

14

Sample UNIX Log
Partial SAS Log
1 options fullstimer;
2 data _null_;
3 length var $30;
4 retain var2-var50 0 var51-var100 'ABC';
5 do x=1 to 10000000;
6 var1=10000000*ranuni(x);
7 if var1>10000000 then var='Greater than 1,000,000';
8 if 500000<=var1<=1000000 then var='Between 500,000 and 1,000,000';
9 if 100000<=var1<500000 then var='Between 100,000 and 500,000';
10 if 10000<=var1<100000 then var='Between 10,000 and 100,000';
11 if 1000<=var1<10000 then var='Between 1,000 and 10,000';
12 if var1<1000 then var='Less than 1,000';
13 end;
14 run;

NOTE: DATA statement used (Total process time):
 real time 6.62 seconds
 user cpu time 5.14 seconds
 system cpu time 0.01 seconds
 Memory 526k
 OS Memory 5680k
 Timestamp 6/29/2010 11:55:32 AM
 Page Faults 82
 Page Reclaims 0
 Page Swaps 0
 Voluntary Context Switches 91
 Involuntary Context Switches 48
 Block Input Operations 91
 Block Output Operations 0

15 options nofullstimer;

Best Practices Using

BASE SAS Software

June 27, 2012

8

15

Sample z/OS Log
Partial SAS Log

16

SAS Data Set Pages
A SAS data set page has the following attributes:

 It is the unit of data transfer between the operating

system buffers and SAS buffers in memory.

 It includes the number of bytes used by the descriptor

portion, the data values, and any operating system

overhead.

 It is fixed in size when the data set is created, either

to a default value or to a value specified by the

programmer.

16

Best Practices Using

BASE SAS Software

June 27, 2012

9

17

Using PROC CONTENTS to Report Page Size

17

Partial PROC CONTENTS Output

 Engine/Host Dependent Information

Data Set Page Size 16384
Number of Data Set Pages 20585
First Data Page 1
Max Obs per Page 92
Obs in First Data Page 72
Number of Data Set Repairs 0
File Name c:\sas\...\sales_history.sas7bdat
Release Created 9.0201M0
Host Created XP_PRO

16,384*20,585=

337,264,640

bytes

proc contents data=work.sales_history;

run;

18

Reading External Files

18

PDV

Input Buffer

I/O

measured

here

Output

SAS

Data

ID Gender Country Name

Input

Raw

Data

I/O

measured

here

Buffers

Buffers

memory
Data is converted

from external

format to

SAS format.

Caches

Best Practices Using

BASE SAS Software

June 27, 2012

10

19

Reading a SAS Data Set with a SET Statement

19

Output

SAS

Data

Input

SAS

Data

PDV
ID Gender Country Name

...

memory

No data

conversion

is necessary.

I/O

measured

here

I/O

measured

here

Caches

20 20

Chapter 1: Best Practices

1.1 Introduction

1.2 Techniques for Conserving CPU and Memory

1.3 Techniques for Minimizing I/O Operations

1.4 Techniques for Conserving Disk Space

1.5 Creating and Using Indexes with SAS Data Sets

1.6 Techniques to Minimize Network Traffic (Self-Study)

Best Practices Using

BASE SAS Software

June 27, 2012

11

21

Techniques for Conserving CPU and Memory
 Execute only the necessary statements.

 Eliminate unnecessary passes of the data.

 Read and write only the data that you require.

 Do not reduce the length of numeric variables.

 Do not compress SAS data sets.

 Use Indexes

21

22

Execute Only Necessary Statements
You minimize the CPU time that SAS uses when you

execute the minimum number of statements in the most

efficient order.

Techniques for executing only the statements that you

require include the following:

 subsetting your data as soon as logically possible

 processing your data conditionally by using the most

appropriate syntax for your data

22

Best Practices Using

BASE SAS Software

June 27, 2012

12

23

Subsetting IF Statement at Bottom of Step

23

data totals;

 set work.sales;

 PercentCap =

 sum(Num1st,NumEcon,NumBus)/CapPassTotal;

 NumNonEconomy = sum(Num1st,NumBus);

 CargoKG = CargoWeight*0.454;

 Month = month(FltDate);

 if PercentCap < 0.8;

run;

Create a new SAS data set from work.sales. The new

SAS data set should contain four new variables and only

those flights filled to less than 80% capacity.

24

Subsetting IF Statement as High as Possible

24

data totals;

 set work.sales;

 PercentCap =

 sum(Num1st,NumEcon,NumBus)/CapPassTotal;

 if PercentCap < 0.8;

 NumNonEconomy = sum(Num1st,NumBus);

 CargoKG = CargoWeight*0.454;

 Month = month(FltDate);

run;

Best Practices Using

BASE SAS Software

June 27, 2012

13

25

Comparing Techniques

25

Technique CPU I/O Memory

I. Subsetting IF at Bottom 2.3 1226.0 265.0

II. Subsetting IF near Top 1.3 1226.0 265.0

Percent Difference 42.8 0.0 0.0

CPU I/O Memory

26

Using Conditional Logic
You can use conditional logic to alter the way that SAS

processes specific observations.

26

IF-THEN/ELSE
statement

executes a SAS statement for
observations that meet specific
conditions.

SELECT
statement

executes one of several
statements or groups
of statements.

Best Practices Using

BASE SAS Software

June 27, 2012

14

27

Using Parallel IF Statements

27

data month;

 set work.sales;

 if month(FltDate) = 1 then Month = 'Jan';

 if month(FltDate) = 2 then Month = 'Feb';

 if month(FltDate) = 3 then Month = 'Mar';

 if month(FltDate) = 4 then Month = 'Apr';

 if month(FltDate) = 5 then Month = 'May';

 if month(FltDate) = 6 then Month = 'Jun';

 if month(FltDate) = 7 then Month = 'Jul';

 if month(FltDate) = 8 then Month = 'Aug';

 if month(FltDate) = 9 then Month = 'Sep';

 if month(FltDate) = 10 then Month = 'Oct';

 if month(FltDate) = 11 then Month = 'Nov';

 if month(FltDate) = 12 then Month = 'Dec';

run;

For the data in work.sales, create a variable named

Month, based on the existing variable FltDate.

28

Using ELSE-IF Statements

28

data month;

 set work.sales;

 if month(FltDate) = 1 then Month = 'Jan';

 else if month(FltDate) = 2 then Month = 'Feb';

 else if month(FltDate) = 3 then Month = 'Mar';

 else if month(FltDate) = 4 then Month = 'Apr';

 else if month(FltDate) = 5 then Month = 'May';

 else if month(FltDate) = 6 then Month = 'Jun';

 else if month(FltDate) = 7 then Month = 'Jul';

 else if month(FltDate) = 8 then Month = 'Aug';

 else if month(FltDate) = 9 then Month = 'Sep';

 else if month(FltDate) = 10 then Month = 'Oct';

 else if month(FltDate) = 11 then Month = 'Nov';

 else if month(FltDate) = 12 then Month = 'Dec';

run;

Best Practices Using

BASE SAS Software

June 27, 2012

15

29

Using the Function Only Once

29

data month(drop=mon);

 set work.sales;

 mon = month(FltDate);

 if mon = 1 then Month = 'Jan';

 else if mon = 2 then Month = 'Feb';

 else if mon = 3 then Month = 'Mar';

 else if mon = 4 then Month = 'Apr';

 else if mon = 5 then Month = 'May';

 else if mon = 6 then Month = 'Jun';

 else if mon = 7 then Month = 'Jul';

 else if mon = 8 then Month = 'Aug';

 else if mon = 9 then Month = 'Sep';

 else if mon = 10 then Month = 'Oct';

 else if mon = 11 then Month = 'Nov';

 else if mon = 12 then Month = 'Dec';

run;

30

Using a SELECT Block

30

data month;

 set work.sales;

 select(month(FltDate));

 when(1) Month = 'Jan'; when(2) Month = 'Feb';

 when(3) Month = 'Mar'; when(4) Month = 'Apr';

 when(5) Month = 'May'; when(6) Month = 'Jun';

 when(7) Month = 'Jul'; when(8) Month = 'Aug';

 when(9) Month = 'Sep'; when(10) Month = 'Oct';

 when(11) Month = 'Nov'; when(12) Month = 'Dec';

 otherwise;

 end;

run;

Best Practices Using

BASE SAS Software

June 27, 2012

16

31

Comparing Techniques

31

Technique CPU I/O Memory

I. ALL IF Statements 15.9 6797.0 280.0

II. ELSE-IF Statements 9.7 6797.0 288.0

III. Using a Function Once 3.0 6797.0 272.0

IV. SELECT/WHEN Block 3.0 6795.0 263.0

The I/O for each technique is the same.

CPU Memory

32

Guidelines for Efficient Conditional Logic

32

IF SELECT

Character Type Numeric

Few Conditions Many

Not Uniform

Distribution

(check for most

commonly

occurring value

first)

Uniform

 For mutually exclusive conditions, use the ELSE-IF

statement (or SELECT statement) rather than an IF

statement for all conditions except the first.

 Check the most frequently occurring condition first.

 When you execute multiple statements based on a

condition, put the statements into a DO group.

Best Practices Using

BASE SAS Software

June 27, 2012

17

33

Most Frequently Occuring Condition

PROC FREQ DATA=libraryname.datasetname

 ORDER=FREQ ;

 TABLES variablename;

RUN;

33

34

Do Group Processing

No Do Groups - Not as Efficient:

If Status = 1

 Then Bonus = Salary * 0.05;

Else If Status = 2

 Then Bonus = Salary * 0.06;

Else Bonus = Salary * 0.04;

If Status = 1

 Then Start_Month = month(Hire_Date);

Else If Status = 2

 Then Start_Month = 6;

Else Start_Month = 1;

 34

Best Practices Using

BASE SAS Software

June 27, 2012

18

35

Do Group Processing
Use of Do Groups – More Efficient:

If Status = 1 Then Do;

 Bonus = Salary * 0.05;

 Start_Month = month(Hire_Date);

 End;

Else If Status = 2 Then Do;

 Bonus = Salary * 0.06;

 Start_Month = 6;

 End;

Else Do;

 Bonus = Salary * 0.04;

 Start_Month = 1;

End;
35

36

Eliminate Unnecessary Passes of the Data
Avoid reading or writing data more than necessary in

order to minimize I/O operations.

Techniques include the following:

 creating multiple output data sets from one pass of

the input data, rather than processing the input data

each time that you create an output data set

 creating sorted subsets with the Sort procedure

 using the SORTED BY data set option or the

PRESORTED option in the PROC SORT statement

to avoid sorting already ordered data

36

Best Practices Using

BASE SAS Software

June 27, 2012

19

37

Multiple DATA Steps

37

data rdu;

 set work.sales;

 if Dest = 'RDU';

run;

data bos;

 set work.sales;

 if Dest = 'BOS';

run;

continued...

Create six subsets from work.sales, one for each

destination on the East Coast.

38

Multiple DATA Steps

38

data iad;
 set work.sales;
 if Dest = 'IAD';
run;
data jfk;
 set work.sales;
 if Dest = 'JFK';
run;
data mia;
 set work.sales;
 if Dest = 'MIA';
run;
data pwm;
 set work.sales;
 if Dest = 'PWM';
run;

Best Practices Using

BASE SAS Software

June 27, 2012

20

39

Single DATA Step

39

data rdu bos iad jfk mia pwm;

 set work.sales;

 if Dest = 'RDU' then output rdu;

 else if Dest = 'BOS' then output bos;

 else if Dest = 'IAD' then output iad;

 else if Dest = 'JFK' then output jfk;

 else if Dest = 'MIA' then output mia;

 else if Dest = 'PWM' then output pwm;

run;

40

Comparing Techniques

40

Technique CPU I/O Memory

I. Multiple DATA Steps 5.2 1781.0 262.0

II. Single DATA Step 1.3 1774.0 483.0

Percent Difference 74.8 0.4 -84.4

CPU I/O Memory

Best Practices Using

BASE SAS Software

June 27, 2012

21

41

DATA Step / PROC SORT Step

41

data east;

 set work.sales;

 where Dest in

 ('RDU','BOS','IAD','JFK','MIA','PWM');

run;

proc sort data = east;

 by Dest;

run;

Create a sorted subset of work.sales that contains

the flights to the East Coast.

42

PROC SORT Step

42

proc sort data = work.sales out = east;

 by Dest;

 where Dest in

 ('RDU','BOS','IAD','JFK','MIA','PWM');

run;

Best Practices Using

BASE SAS Software

June 27, 2012

22

43

Comparing Techniques

43

Technique CPU I/O Memory

I. DATA/SORT 1.8 3490.0 18199

II. SORT with WHERE 1.4 1745.0 18355

Percent Difference 23.4 50.0 -0.9

CPU I/O Memory

44

Using the SORTEDBY= Option
If the input data is in sorted order, you can specify the

order by using the SORTEDBY= output data set option.

The SORTEDBY= option has the following attributes:

 sets the sort flag on the data set to YES

 defines the sort flag as an asserted data order

 requires that SAS check the order of the data

as it processes it

General form of the SORTEDBY option:

44

data-set-name(SORTEDBY=by-clause | _NULL_)

Best Practices Using

BASE SAS Software

June 27, 2012

23

45

Using the SORTEDBY= Option
Create a SAS data set from an external file containing

invoice information. The external file is in sorted order

by order date.

45

filename M1 'mon1.dat';

data january(sortedby=Order_Date);

 infile M1 dlm=',';

 input Customer_ID Order_ID Order_Type

 Order_Date:date9.

 Delivery_Date:date9.;

run;

46

Using the SORTEDBY= Option

46

 The CONTENTS Procedure

Data Set Name WORK.JANUARY Observations 4
Member Type DATA Variables 5
Engine V9 Indexes 0
Created Sunday, January 27, 2008 05:36:23 PM Observation Length 40
Last Modified Sunday, January 27, 2008 05:36:23 PM Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted YES
Label
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

 <lines removed>

 Sort Information

 Sortedby Order_Date
 Validated NO
 Character Set ANSI

Partial SAS Log

Best Practices Using

BASE SAS Software

June 27, 2012

24

47

Using the SORTEDBY= Option
Attempt to sort the data.

47

proc sort data=january;

 by Order_Date;

run;

Log

1197 proc sort data=january;
1198 by Order_Date;
1199 run;

NOTE: Input data set is already sorted, no sorting done.
NOTE: PROCEDURE SORT used (Total process time):
 real time 0.03 seconds
 cpu time 0.00 seconds

48

Using the PRESORTED Option
Beginning in SAS 9.2, there is a PROC SORT statement

option, PRESORTED, that checks within the input data

set to determine whether the sequence of observations

are in order before sorting. By specifying this option, you

avoid the cost of sorting the data set.

48

proc sort data=january presorted;

 by Order_Date;

run;

proc contents data=january;

run;

 If the data set january is not in sorted order by

Order_Date, PROC SORT with the PRESORTED

option still sorts the data.

Best Practices Using

BASE SAS Software

June 27, 2012

25

49

Using the PRESORTED Option

49

34 proc sort data=january presorted;

35 by Order_Date;

36 run;

NOTE: Sort order of input data set has been verified.

NOTE: There were 4 observations read from the data set WORK.JANUARY.

NOTE: Input data set is already sorted, no sorting done.

Partial Log

Partial PROC CONTENTS Output

 Sort Information

 Sortedby Order_Date
 Validated YES
 Character Set ANSI

 The SORTEDBY= option was not required when

creating the data set january in order to use the

PRESORTED option in PROC SORT.

50 50

Var Name Var Format

work.sales FlightID $7.

FltDate DATE9.

work.salesc FlightIDNumber $7.

FltDate MMDDYYP10.

Business Task
Change the variable attributes in work.salesc to

be consistent with those in work.sales.

Best Practices Using

BASE SAS Software

June 27, 2012

26

51

DATA Step / PROC DATASETS

51

data work.salesc;

 set work.salesc;

 rename FlightIDNumber = FlightID;

 format FltDate date9.;

run;

proc datasets library=work nolist;

 modify salesc;

 rename FlightIDNumber=FlightID;

 format FltDate date9.;

quit;

52

Comparing Techniques

52

Technique CPU IO Memory

I. DATA Step 1.8 9.0 264.0

II. PROC DATASETS 0.1 10.0 173.0

Percent Difference 97.1 -11.1 34.5

CPUCPUCPU I/OI/OI/O MemoryMemoryMemory

Best Practices Using

BASE SAS Software

June 27, 2012

27

53

Read and Write Data Selectively
If you process fewer variables and observations,

CPU and/or I/O operations can be affected significantly.

53

54

Selecting Observations

54 ...

Destination Flight Number Route Number

BWI SE00007 0000206

ATL SE0003 0000202

GSP SE0001 0000200

BWI SE0006 0000206

WHERE Dest = "BWI"

Best Practices Using

BASE SAS Software

June 27, 2012

28

55

Selecting Observations

55

Destination Flight Number Route Number

BWI SE00007 0000206

ATL SE0003 0000202

GSP SE0001 0000200

BWI SE0006 0000206

IF Dest = "BWI"

...

56

Subsetting IF versus WHERE

56

data west;

 set work.sales;

 if Dest in ('LAX','SEA','SFO');

run;

data west;

 set work.sales;

 where Dest in ('LAX','SEA','SFO');

run;

Create a subset of the sales data that contains data for

West Coast destinations.

Best Practices Using

BASE SAS Software

June 27, 2012

29

57

Comparing Techniques

57

Technique CPU I/O Memory

I. Subsetting IF 1.0 429.0 263.0

II. WHERE Statement 0.9 427.0 272.0

Percent Difference 5.1 0.5 -3.4

CPU I/O Memory

58

Subsetting IF versus WHERE Statements

58

ID Flight Route Dest

Buffers

PDV

Buffers I/O

measured

here

Output

Data

Set

Input

SAS

Data WHERE statement

selects observations.

memory

I/O

measured

here

Subsetting IF

selects observations.

Best Practices Using

BASE SAS Software

June 27, 2012

30

59

Subsetting IF versus WHERE Statements

59

33 data work.ontime work.late;
34 set work.custord;
35 FullName = catx(' ',customer_firstname,customer_lastname);
36 age = int((today()-customer_birthdate)/364.25);
37 total = (total_retail_price * quantity)*discount;
38 profit = total - (costprice_per_unit*quantity);
39 if employee_id ne 99999999;
40 if (delivery_date > order_date+4)
41 then output work.late;
42 else output work.ontime;
43 run;

NOTE: There were 973323 observations read from the data set WORK.CUSTORD.
NOTE: The data set WORK.ONTIME has 719208 observations and 26 variables.
NOTE: The data set WORK.LATE has 18416 observations and 26 variables.
NOTE: DATA statement used (Total process time):
 real time 2.26 seconds
 user cpu time 0.82 seconds
 system cpu time 0.62 seconds
 memory 439k
 OS Memory 10424k
 Timestamp 02/15/2012 09:45:02 AM

60

Subsetting IF versus WHERE Statements

60

46 data work.ontime work.late;
47 set work.custord;
48 if employee_id ne 99999999;
49 FullName = catx(' ',customer_firstname,customer_lastname);
50 age = int((today()-customer_birthdate)/364.25);
51 total = (total_retail_price * quantity)*discount;
52 profit = total - (costprice_per_unit*quantity);
53 if (delivery_date > order_date+4)
54 then output work.late;
55 else output work.ontime;
56 run;

NOTE: There were 973323 observations read from the data set WORK.CUSTORD.
NOTE: The data set WORK.ONTIME has 719208 observations and 26 variables.
NOTE: The data set WORK.LATE has 18416 observations and 26 variables.
NOTE: DATA statement used (Total process time):
 real time 2.07 seconds
 user cpu time 0.68 seconds
 system cpu time 0.70 seconds
 memory 431k
 OS Memory 10424k
 Timestamp 02/15/2012 09:45:04 AM

Best Practices Using

BASE SAS Software

June 27, 2012

31

61

Subsetting IF versus WHERE Statements

61

58 data work.ontime work.late;
59 set work.custord;
60 where employee_id ne 99999999;
61 FullName = catx(' ',customer_firstname,customer_lastname);
62 age = int((today()-customer_birthdate)/364.25);
63 total = (total_retail_price * quantity)*discount;
64 profit = total - (costprice_per_unit*quantity);
65 if (delivery_date > order_date+4)
66 then output work.late;
67 else output work.ontime;
68 run;

NOTE: There were 737624 observations read from the data set WORK.CUSTORD.
 WHERE employee_id not = 99999999;
NOTE: The data set WORK.ONTIME has 719208 observations and 26 variables.
NOTE: The data set WORK.LATE has 18416 observations and 26 variables.
NOTE: DATA statement used (Total process time):
 real time 1.96 seconds
 user cpu time 0.53 seconds
 system cpu time 0.88 seconds
 memory 438k
 OS Memory 14424k
 Timestamp 02/15/2012 09:45:06 AM

62

Subsetting IF versus WHERE Statements

62

69 data work.ontime work.late;
70 set work.custord (where=(employee_id = 99999999));
71 FullName = catx(' ',customer_firstname,customer_lastname);
72 age = int((today()-customer_birthdate)/364.25);
73 total = (total_retail_price * quantity)*discount;
74 profit = total - (costprice_per_unit*quantity);
75 if (delivery_date > order_date+4)
76 then output work.late;
77 else output work.ontime;
78 run;

NOTE: There were 737624 observations read from the data set WORK.CUSTORD.
 WHERE employee_id not = 99999999;
NOTE: The data set WORK.ONTIME has 719208 observations and 26 variables.
NOTE: The data set WORK.LATE has 18416 observations and 26 variables.
NOTE: DATA statement used (Total process time):
 real time 1.93 seconds
 user cpu time 0.51 seconds
 system cpu time 0.90 seconds
 memory 438k
 OS Memory 14424k
 Timestamp 02/15/2012 09:45:06 AM

Best Practices Using

BASE SAS Software

June 27, 2012

32

63

The WHERE= Data Set Option

63

ID Flight Route Dest

Buffers

PDV

Buffers I/O

measured

here

Output

Data

Set

Input

SAS

Data WHERE= data set option

on the input side

memory

I/O

measured

here

WHERE= data set option

on the output side

64 64

Subsetting an External File
Create a subset of data that contains only the flights

to the West Coast.

The data is in an external file that contains information

about all flights.

Best Practices Using

BASE SAS Software

June 27, 2012

33

65

Reading All Variables and Subsetting

65

data west;

 infile rawdata ;

 input FlightID $7. RouteID $7.

 Origin $3. Dest $3.

 DestType $13. FltDate date9.

 Cap1st 8. CapBus 8.

 CapEcon 8. CapPassTotal 8.

 CapCargo 8. Num1st 8.

 NumBus 8. NumEcon 8.

 NumPassTotal 8. Rev1st 8.

 RevBus 8. RevEcon 8.

 CargoRev 8. RevTotal 8.

 CargoWeight 8.;

 if Dest in ('LAX','SEA','SFO');

run;

66

Reading Selected Variable(s) and Subsetting

66

data west;

 infile rawdata ;

 input @18 Dest $3. @;

 if Dest in ('LAX','SEA','SFO');

 input @1 FlightID $7. RouteID $7.

 Origin $3.

 @21 DestType $13. FltDate date9.

 Cap1st 8. CapBus 8.

 CapEcon 8. CapPassTotal 8.

 CapCargo 8. Num1st 8.

 NumBus 8. NumEcon 8.

 NumPassTotal 8. Rev1st 8.

 RevBus 8. RevEcon 8.

 CargoRev 8. RevTotal 8.

 CargoWeight 8.;

run;

Best Practices Using

BASE SAS Software

June 27, 2012

34

67

Comparing Techniques

67

Technique CPU I/O Memory

I. Subsetting at bottom 4.3 433.0 227.0

II. Subsetting higher up 1.4 425.0 243.0

Percent Difference 67.2 1.8 -7.0

CPU I/O Memory

68

Reading External Files

68

ID Flight Route Dest

Buffers

PDV

Buffers I/O

measured

here

Output

Data

Set

Input

Raw

Data

memory

I/O

measured

here

Input Buffer
Entire
Record
Loaded

translation of

numerics

Best Practices Using

BASE SAS Software

June 27, 2012

35

69

Subsetting Variables

69

To subset variables, you can use the following:

 DROP and KEEP statements

 DROP= and KEEP= data set options

DROP KEEP

FLIGHT HUB DATE

70

Reading and Writing All Variables

70

Create a report that contains the average and median of

the total number of passengers on the flights for each

destination in work.sales that has 21 variables.

data totals;

 set work.sales;

 NonEconPass =

 sum(Num1st,NumBus);

run;

proc means data = totals mean median;

 title 'Non-Economy Passengers';

 class Dest;

 var NonEconPass;

run;

Best Practices Using

BASE SAS Software

June 27, 2012

36

71

Reading All Variables/Writing Two Variables

71

data totals(keep = Dest NonEconPass);

 set work.sales;

 NonEconPass =

 sum(Num1st,NumBus);

run;

proc means data = totals mean median;

 title 'Non-Economy Passengers';

 class Dest;

 var NonEconPass;

run;

72

Reading Three Variables

72

data totals;

 set work.sales(keep = Dest Num1st

 NumBus);

 NonEconPass =

 sum(Num1st,NumBus);

run;

proc means data = totals mean median;

 title 'Non-Economy Passengers';

 class Dest;

 var NonEconPass;

run;

Best Practices Using

BASE SAS Software

June 27, 2012

37

73

Reading Three Variables/Writing Two
Variables

73

data totals(keep = Dest NonEconPass);

 set work.sales(keep = Dest Num1st

 NumBus);

 NonEconPass =

 sum(Num1st,NumBus);

run;

proc means data = totals mean median;

 title 'Non-Economy Passengers';

 class Dest;

 var NonEconPass;

run;

74

Reading Three Variables/Reading Two
Variables

74

data totals;
 set work.sales(keep = Dest Num1st
 NumBus);
 NonEconPass =
 sum(Num1st,NumBus);
run;

proc means data = totals
 (keep = Dest NonEconPass)
 mean median;
 title 'Non-Economy Passengers';
 class Dest;
 var NonEconPass;
run;

Best Practices Using

BASE SAS Software

June 27, 2012

38

75

Comparing Techniques

75

Technique CPU I/O Memory

I. KEEP not used 2.9 7177 8140

II. KEEP on DATA statement 2.3 656 8138

III. KEEP on SET statement 2.4 1625 8138

IV. KEEP on SET and DATA statements 2.2 662 8138

V. KEEP on SET and PROC statements 2.4 1625 8139

V.

CPU

76

Comparing Techniques

76

V.

I/O

V. V.

Memory

Best Practices Using

BASE SAS Software

June 27, 2012

39

77

Using the KEEP=/DROP= Options

77

ID Flight Route Dest

Buffers

PDV

Buffers I/O

measured

here

Output

Data

Set

Input

SAS

Data

memory

I/O

measured

here
KEEP=/DROP=

data set option

in the SET statement

D

KEEP=/DROP= data set option

in the DATA statement

(KEEP/DROP statement)

D

78

Reading All Fields

78

data sales(keep = FlightID Num1st

 NumBus NumEcon NumPassTotal);

 infile rawdata ;

 input FlightID $7. RouteID $7.

 Origin $3. Dest $3.

 DestType $13. FltDate date9.

 Cap1st 8. CapBus 8.

 CapEcon 8. CapPassTotal 8.

 CapCargo 8. Num1st 8.

 NumBus 8. NumEcon 8.

 NumPassTotal 8. Rev1st 8.

 RevBus 8. RevEcon 8.

 CargoRev 8. RevTotal 8.

 CargoWeight 8.;

run;

Best Practices Using

BASE SAS Software

June 27, 2012

40

79

Reading Required Fields

79

data sales;

 infile rawdata ;

 input FlightID $7. @85 Num1st 8.

 NumBus 8. NumEcon 8.

 NumPassTotal 8. ;

run;

80

Comparing Techniques

80

Technique CPU I/O Memory

I. Read all fields 4.4 1627.0 219.0

II. Read required fields 1.7 1625.0 215.0

Percent Difference 60.7 0.1 1.8

CPU I/O Memory

Best Practices Using

BASE SAS Software

June 27, 2012

41

81

Conclusions
If the variable is already in a SAS data set, you can use

the following to minimize the volume of data processed:

 WHERE statements in DATA and PROC steps

 KEEP and DROP statements in the DATA step

 WHERE=, KEEP=, and DROP= data set options

in DATA and PROC steps

81

If the data is not in a SAS data set or the variable is a

calculated variable, you can use the following to minimize

the volume of data processed:

 subsetting IF statements

 selective INPUT statements

82 82

Best Practices Using

BASE SAS Software

June 27, 2012

42

83 83

Chapter 1: Best Practices

1.1 Introduction

1.2 Techniques for Conserving CPU and Memory

1.3 Techniques for Minimizing I/O Operations

1.4 Techniques for Conserving Disk Space

1.5 Creating and Using Indexes with SAS Data Sets

1.6 Techniques to Minimize Network Traffic (Self-Study)

84

Techniques for Minimizing I/O Operations
 Process only the necessary variables and

observations.

 Reduce the number of times that the data is

processed.

 Reduce the number of data accesses using the

appropriate BUFSIZE= and BUFNO= options for the

way that the data is accessed.

 Create a SAS data set, if you process the same non-

SAS data repeatedly. SAS can process SAS data sets

more efficiently than it can process raw data files or

database data.

 Create indexes on variables used for WHERE

processing.

84

Best Practices Using

BASE SAS Software

June 27, 2012

43

85

Controlling Page Size and Memory Usage
 You can use the BUFSIZE= system option or data set

option to control the page size of an output SAS data

set.

 You can use the BUFNO= system option or data set

option to control the number of SAS buffers open

simultaneously in memory.

85

BUFSIZE= n | nK | nM | nG | nT | hexX | MIN | MAX

 BUFNO= n

86

Controlling Page Size and Memory Usage

86

Output

SAS

Data

Input

SAS

Data

PDV
ID Gender Country Name

memory

Buffer number

Buffer size and number

Best Practices Using

BASE SAS Software

June 27, 2012

44

87

Controlling Page Size and Memory Usage

87

The product of BUFNO= and BUFSIZE= determines how

much data can be transferred in a read operation.

...

Increasing either BUFSIZE= or BUFNO=

increases the amount of data that can be

transferred in a read operation.

32,768 2 16384

Bytes

transferred

in one I/O

BUFNO

BUFSIZE

88

Controlling Page Size
In order to select a default page size, SAS software uses

an algorithm based on observation length, engine, and

operating environment.

You can use the BUFSIZE= system or data set option

to override the default page size.

BUFSIZE= specifies not only the page size (in bytes),

but also the size of each buffer used to read or write the

SAS data set.

88

data work.times(bufsize = 4096);
 infile rtetimes;
 input @1 RouteID $7.
 @8 Origin $3.
 @11 Dest $3.
 @14 Distance 8.
 @24 Depart time5.
 @32 Arrival time5.;
run;

Best Practices Using

BASE SAS Software

June 27, 2012

45

89

Controlling Page Size

89

one

operation

Buffer

SAS buffers

Page

of

data

Operating

system buffers

4096 bytes 4096 bytes

...

90

Controlling Page Size
After it is specified, page size is a permanent attribute of

the data set, and is used whenever the data set is

processed.

Choosing a page size that is larger than the default can

reduce execution time by reducing the number of times

that SAS must read from or write to the operating system

buffers.

The reduction in I/O comes at the cost of increased

memory consumption.

90

Best Practices Using

BASE SAS Software

June 27, 2012

46

91

Controlling Memory Usage

91

Page 2

Page 1

Page 3

databufno = 3

current SAS session

92

Controlling Memory Usage
The buffer number is not a permanent attribute of the data

set and is valid only for the current step or SAS session.

As more buffers are available, more pages can be

transferred in a single move operation.

The reduction in number of moves comes at the cost of

increased memory consumption.

92

data _null_;

 set work.times(bufno = 3);

run;

Best Practices Using

BASE SAS Software

June 27, 2012

47

93

SASFILE Global Statement
 The SASFILE statement requests that a SAS data set

be opened and loaded into SAS memory in its entirety

instead of a few pages at a time.

 After it is read, data is held in memory for subsequent

DATA and PROC steps to process.

 A second SASFILE statement closes the file and frees

the SAS buffers.

93

94

SASFILE Global Statement

94

General form of the SASFILE statement:

SASFILE <libref.>member-name

 <(password-data-set-option(s))>

 OPEN | LOAD | CLOSE;

Best Practices Using

BASE SAS Software

June 27, 2012

48

95

Buffer Allocation
When the SASFILE statement executes, SAS allocates

the number of buffers based on the number of pages of

the SAS data set and index file.

If the file in memory increases in size during processing

by editing or appending data, the number of buffers also

increases.

95

96

Using the SASFILE Statement

96

Create reports using the PRINT, TABULATE, MEANS,

and FREQUENCY procedures against a single

SAS data set.
 „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 ‚ ‚ Employee Salary ‚
 ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚ ‚ Mean ‚ Median ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚Job Code ‚ ‚ ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚
 ‚FLTAT1 ‚ 29594.12‚ 29000.00‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
 ‚FLTAT2 ‚ 30691.63‚ 31000.00‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

 The MEANS Procedure

 Analysis Variable : Salary Employee Salary

 Job N
 Code Obs N Mean Std Dev Minimum Maximum
 ƒƒ
 FLTAT1 170 170 29594.12 7982.60 16000.00 45000.00

 FLTAT2 227 227 30691.63 8848.88 16000.00 45000.00
 ƒƒ

 Job

LastName FirstName Code Location Country

FORT THERESA L. FLTAT2 CARY USA

FISHER ALEC FLTAT2 CARY USA

WILLIAMS ARLENE M. FLTAT1 CARY USA

GOODYEAR GEORGIA FLTAT1 CARY USA

CHASE JR. MARJORIE J. FLTAT1 CARY USA

 The FREQ Procedure

 Job Code

 Job Cumulative Cumulative
 Code Frequency Percent Frequency Percent
 ƒƒƒ
 FLTAT1 170 42.82 170 42.8
 FLTAT2 227 57.18 397 100.00

 Cumulative Cumulative
 Gender Frequency Percent Frequency Percent
 ƒƒƒ
 F 211 53.15 211 53.15
 M 186 46.85 397 100.00

Best Practices Using

BASE SAS Software

June 27, 2012

49

97

Using the SASFILE Statement

97

sasfile work.fltaten load;
proc print data = work.fltaten;
 var LastName FirstName JobCode
 Country Location;
 sum Salary;
run;
proc tabulate data = work.fltaten;
 class Gender;
 var Salary;
 table Gender, Salary*(mean median);
run;
proc means data = work.fltaten;
 var Salary;
 class Gender;
 output out = summary sum =;
run;
proc freq data = work.fltaten;
 tables JobCode Gender;
run;
sasfile work.fltaten close;

work.fltaten

is read into memory

only once instead of

four times. This

results in one-fourth

as many I/O

operations,

increased memory

usage, and

probably reduced

elapsed time.

98

Using the SGIO System Option in Windows

The SGIO system option performs the following functions:

 activates the Scatter-Read/Gather-Write I/O feature

 improves I/O performance for SAS I/O files when the

PC has a large amount of RAM

98

General form of the SGIO system option:

 NOSGIO | SGIO;

Prior to SAS 9.2 NOSGIO | SGIO is an invocation

option only. Starting with SAS 9.2 SGIO also

became available as a data set option.

Best Practices Using

BASE SAS Software

June 27, 2012

50

99

Using the SGIO System Option in Windows

When SGIO is active, SAS does the following:

 uses the number of buffers that are specified by the
BUFNO= system option to transfer data between disk
and RAM

 bypasses Windows file cache when reading or writing

data

 reads ahead the number of pages specified by the
BUFNO= system option and places the data in
memory before it is needed

When the data is needed, it is already in memory and is,
in effect, a direct memory access.

99

Try different values of the BUFNO system option

to tune each SAS job or DATA step.

100

Using Direct File I/O in UNIX
The ENABLEDIRECTIO and USEDIRECTIO LIBNAME

statement and data set options perform the following

functions:

 activates direct I/O access

 bypasses UNIX file caching

 improves I/O performance for SAS I/O files that

require a single sequential pass

The LIBNAME statement option enables direct I/O to any

file in the library. The data set option allows direct I/O to

the data set for this SAS program step only.

100

You must use the LIBNAME statement option and

the data set option together to enable direct I/O.

Best Practices Using

BASE SAS Software

June 27, 2012

51

101

Using Direct File I/O in UNIX
General form of the USEDIRECTIO LIBNAME statement

option:

General form of the USEDIRECTIO SAS data set option:

101

LIBNAME libref 'directory' USEDIRECTIO=NO|YES

 ENABLEDIRECTIO;

SAS-data-set-name (USEDIRECTIO=NO|YES)

102 102

Best Practices Using

BASE SAS Software

June 27, 2012

52

103 103

Chapter 1: Best Practices

1.1 Introduction

1.2 Techniques for Conserving CPU and Memory

1.3 Techniques for Minimizing I/O Operations

1.4 Techniques for Conserving Disk Space

1.5 Creating and Using Indexes with SAS Data Sets

1.6 Techniques to Minimize Network Traffic (Self-Study)

104

Techniques for Conserving Disk Space
 Process only the necessary variables.

 Create reduced length numerics.

 Compress SAS data files.

104

Best Practices Using

BASE SAS Software

June 27, 2012

53

105

Storage Required for Data Files

Descriptor
Portion

105

Index File
Index 1
Index 2

D
a

ta
 P

o
rtio

n

106

Review of the Data Set Page

 is the unit of data transfer between the SAS storage

device and main memory

 includes the bytes used by the descriptor portion,

the data values, and any overhead

 is fixed in size when the data set is created.

106

A data set page

Best Practices Using

BASE SAS Software

June 27, 2012

54

107

Determining Page Size with PROC CONTENTS

107

 Engine/Host Dependent Information

Data Set Page Size 16384
Number of Data Set Pages 3396
First Data Page 1
Max Obs per Page 97
Obs in First Data Page 76
Index File Page Size 4096
Number of Index File Pages 2552
Number of Data Set Repairs 0
File Name C:\workshop\winsas\prog3\sales.sas7bdat
Release Created 9.0101M3
Host Created XP_PRO

Partial Output

proc contents data = work.sales;
run;

work.sales

contains 55,640,064

bytes of data in the data

portion and 10,452,992

bytes for the index file.

The total number of

bytes

is 66,093,056.

108

Characteristics of Numeric Variables
Numeric variables

 store multiple digits per byte

 take eight bytes of storage per variable, by default

 can be reduced in size

 always have a length of eight bytes in the PDV

 are stored as floating-point numbers in real-binary

representation

 use a minimum of one byte to store the sign and

exponent of the value (depending on the operating

environment) and use the remaining bytes to store

the mantissa of the value.

108

Best Practices Using

BASE SAS Software

June 27, 2012

55

109

Default Length of Numeric Variables
The number 35298 can also be written as follows:

109

SAS stores numeric variables in floating point form:

+0.35298*(10**5)

Sign Mantissa Base Exponent

Exponent Sign Mantissa

110

Assigning the Length of Numeric Variables
 You can use a LENGTH statement to assign a length

from two to eight bytes to numeric variables.

 The minimum length of numeric variables depends

on the operating environment.

110

Example:

data reducedsales;

 length Cap1st CapBus CapEcon 3

 CapCargo Num1st NumBus

 NumEcon CargoWeight FltDate 4

 Rev1st RevBus

 RevEcon CargoRev 5;

 <more SAS code>

run;

Best Practices Using

BASE SAS Software

June 27, 2012

56

111

Assigning the Length of Numeric Variables

111

Size of

work.sales

(without index)

Size of

reducedsales

% Difference

55,640,064 bytes 37,134,336 bytes 33%

112

Comparing Data Sets

112

Partial Output

proc compare data = work.sales

 compare = work.reducedsales;

run;

 Observation Summary

 Observation Base Compare

 First Obs 1 1
 Last Obs 329264 329264

Number of Observations in Common: 329264.
Total Number of Observations Read from work.sales: 329264.
Total Number of Observations Read from work.reducedsales: 329264.

Number of Observations with Some Compared Variables Unequal: 0.
Number of Observations with All Compared Variables Equal: 329264.

NOTE: No unequal values were found. All values compared are exactly equal.

Best Practices Using

BASE SAS Software

June 27, 2012

57

113

Possible Storage Lengths for Integer Values

Windows and UNIX

113

Length (bytes) Largest Integer

Represented Exactly

3 8,192

4 2,097,152

5 536,870,912

6 137,438,953,472

7 35,184,372,088,832

8 9,007,199,254,740,992

114

Possible Storage Lengths for Integer Values

z/OS

114

Length (bytes) Largest Integer

Represented Exactly

2 256

3 65,536

4 16,777,216

5 4,294,967,296

6 1,099,511,627,776

7 281,474,946,710,656

8 72,057,594,037,927,936

Best Practices Using

BASE SAS Software

June 27, 2012

58

115

Assigning the Length of Numeric Variables
The use of a numeric length less than 8 bytes does the

following:

 reduces the number of bytes available for the

mantissa, and thus reduces the precision of the largest

number that can be accurately stored

 does not affect how numbers are stored in the PDV;

numbers are always eight bytes in length in the PDV

 causes the number to be truncated to the specified

length when the value is written to the SAS data set

 causes the number to be expanded to eight bytes

in the PDV when the data set is read by padding

the mantissa with binary zeros.

115

116

Reading Reduced-Length Numeric Variables
Reading reduced-length numeric variables

 requires less I/O

 uses additional CPU

 can be dangerous for high precision values, including

non-integer and large integer values.

116

Best Practices Using

BASE SAS Software

June 27, 2012

59

117

Dangers of Reduced-Length Numeric Variables
It is not recommended that you change the length

of non-integer numeric variables.

117

data test;

 length x 4;

 x = 1/10;

 y = 1/10;

run;

data _null_;

 set test;

 put x=;

 put y=;

run;

118

Dangers of Reduced-Length Numeric Variables

118

 81 data test;

 82 length x 4;

 83 x = 1/10;

 84 y = 1/10;

 85 run;

 NOTE: The data set WORK.TEST has 1 observations and 2 variables.

 86

 87 data _null_;

 88 set test;

 89 put x=;

 90 put y=;

 91 run;

 x=0.0999999642

 y=0.1

 NOTE: There were 1 observations read from the data set WORK.TEST.

Partial Log

Best Practices Using

BASE SAS Software

June 27, 2012

60

119

Dangers of Reduced-Length Numeric Variables
It is not recommended that you change the length of

integer numeric variables inappropriately or that you

change the length of large integer numeric variables.

119

data test;

 length x 3;

 x = 8193;

run;

data _null_;

 set test;

 put x=;

run;

120

Dangers of Reduced-Length Numeric Variables
Partial Log

120

192
193 data _null_;
194 set test;
195 put x=;
196 run;

x=8192
NOTE: There were 1 observations read from the
data set WORK.TEST.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

Best Practices Using

BASE SAS Software

June 27, 2012

61

121

Simplified Uncompressed Data File Structure

24 /

40

byte

OH

Obs

1

Obs

2

Obs

3

Obs

4

Obs

5

 1

bit /

obs

OH

24 /

40

byte

OH

Obs

6

Obs

7

Obs

8

Obs

9

Obs

10

Obs

11

Obs

12

1

bit /

obs

OH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

24 /

40

byte

OH

Obs

x

Obs

y

Obs

z

 1

bit /

obs

OH

Descriptor *

*

Page

1

Page

2

Page

n
* Unused space

121

122

Uncompressed SAS Data File
The features of uncompressed SAS data files include

the following:

 All observations use the same number of bytes.

 Each variable occupies the same number of bytes

in every observation.

 Character values are padded with blanks.

 Numeric values are padded with binary zeros.

 The descriptor portion of the data set uses part

of the first data set page.

122 continued...

Best Practices Using

BASE SAS Software

June 27, 2012

62

123

Uncompressed SAS Data File
 There is a 24-byte overhead at the beginning of each

page on 32-bit systems.

 There is a 40-byte overhead at the beginning of each

page on 64-bit systems.

 There is a 1-bit per observation overhead, rounded

up to the nearest byte.

 New observations are added at the end of the file.

If a new page is needed for a new observation,

a whole data set page is added.

 Deleted observation space is never reused, unless

the entire data file is rebuilt.

123

124

Simplified Structure of a Compressed Data Set

24 |

40

byte

OH

12 | 24

bytes/

obs

OH

* Obs 7 Obs 6 Obs 5

O

b

s

 4

Obs

3

Obs

2

O

b

s

1

Descriptor

* Unused space

Page

1

Page

2

Page

n

24 |

40

byte

OH

12 | 24

bytes/

obs

OH

*

Obs

16

O

b

s

15

Obs 14 Obs 13
Obs

 12

O

b

s

11

Obs

10

Obs

9

O

b

s

8

24 |

40

byte

OH

12 | 24

bytes/

obs

OH

*

O

b

s

y

Obs z

.

.

.

124

Best Practices Using

BASE SAS Software

June 27, 2012

63

125

Compressed SAS Data File
Features of compressed SAS data files:

 Each observation is a single string of bytes. Variable

types and boundaries are ignored.

 Each observation can have a different length.

 Consecutive repeating characters and numbers are

collapsed into fewer bytes.

 If an updated observation is larger than its original

size, it is stored on either the same data set page or

on a different page with a pointer to the original page.

 The descriptor portion of the data set is stored at the

end of the first data set page.

125 continued...

126

Compressed SAS Data File
 There is a 24-byte overhead at the beginning of each

page on 32-bit systems.

 There is a 40-byte overhead at the beginning of each

page on 64-bit systems.

 There is a 12-byte-per-observation overhead on 32-bit

systems.

 There is a 24-byte-per-observation overhead on 64-bit

systems.

 Deleted observation space can be reused if the

REUSE=YES data set or system option was turned

on when the SAS data file was compressed.

126

Best Practices Using

BASE SAS Software

June 27, 2012

64

127

Compressing SAS Files
There are two different algorithms that can be used to

compress files:

 the RLE (Run Length Encoding) compression

algorithm (compress = YES | CHAR)

 the RDC (Ross Data Compression) algorithm

(COMPRESS = BINARY)

127

The optimal algorithm depends

on the characteristics of your data.

128

Creating an Uncompressed Data File

128

data sales;

 infile 'Sales.dat';

 input @1 FlightID $7. @8 RouteID $7.

 @15 Origin $3. @18 Dest $3.

 @21 DestType $13. @34 FltDate date9.

 @43 Cap1st 3. @46 CapBus 3.

 @49 CapEcon 3. @52 CapPassTotal 3.

 @55 CapCargo 6. @61 Num1st 3.

 @64 NumBus 3. @67 NumEcon 3.

 @70 NumPassTotal 3. @73 Rev1st 7.

 @80 RevBus 7. @87 RevEcon 7.

 @94 CargoRev 8. @102 RevTotal 10.

 @112 CargoWeight 5.;

run;

Best Practices Using

BASE SAS Software

June 27, 2012

65

129

Creating a Compressed Data File

129

data saleschar(compress = char);

 infile 'Sales.dat';

 input @1 FlightID $7. @8 RouteID $7.

 @15 Origin $3. @18 Dest $3.

 @21 DestType $13. @34 FltDate date9.

 @43 Cap1st 3. @46 CapBus 3.

 @49 CapEcon 3. @52 CapPassTotal 3.

 @55 CapCargo 6. @61 Num1st 3.

 @64 NumBus 3. @67 NumEcon 3.

 @70 NumPassTotal 3. @73 Rev1st 7.

 @80 RevBus 7. @87 RevEcon 7.

 @94 CargoRev 8. @102 RevTotal 10.

 @112 CargoWeight 5.;

run;

130

Partial Log

130

NOTE: The data set WORK.SALESCHAR has 329264 observations and 21
variables.
NOTE: Compressing data set WORK.SALESCHAR decreased size by 28.14
percent.
 Compressed is 4930 pages; un-compressed would require 6861 pages.
NOTE: DATA statement used (Total process time):
 real time 17.36 seconds
 cpu time 3.25 seconds

Best Practices Using

BASE SAS Software

June 27, 2012

66

131

Creating a Compressed Data File

131

data salesbin(compress = binary);

 infile 'Sales.dat';

 input @1 FlightID $7. @8 RouteID $7.

 @15 Origin $3. @18 Dest $3.

 @21 DestType $13. @34 FltDate date9.

 @43 Cap1st 3. @46 CapBus 3.

 @49 CapEcon 3. @52 CapPassTotal 3.

 @55 CapCargo 6. @61 Num1st 3.

 @64 NumBus 3. @67 NumEcon 3.

 @70 NumPassTotal 3. @73 Rev1st 7.

 @80 RevBus 7. @87 RevEcon 7.

 @94 CargoRev 8. @102 RevTotal 10.

 @112 CargoWeight 5.;

run;

132

Partial Log

132

NOTE: The data set WORK.SALESBIN has 329264 observations and 21
variables.
NOTE: Compressing data set WORK.SALESBIN decreased size by 31.51
percent.
 Compressed is 4699 pages; un-compressed would require 6861 pages.
NOTE: DATA statement used (Total process time):
 real time 7.04 seconds
 cpu time 3.62 seconds

Best Practices Using

BASE SAS Software

June 27, 2012

67

133

Summary of Compression Results

133

Data Set Algorithm

Used

Number of

Bytes

Decreased

size

sales none 55,623,680 --

saleschar CHAR 40,386,560 28.14%

salesbin BINARY 38,494,208 31.51%

134

Creating a Compressed Data File

134

To create a compressed data file, use the COMPRESS=

output data set option or system option.

General forms of the COMPRESS= options:

SAS-data-set(COMPRESS = NO | YES | CHAR | BINARY)

OPTIONS COMPRESS = NO | YES | CHAR | BINARY;

Best Practices Using

BASE SAS Software

June 27, 2012

68

135

Comparing Compression Methods

135

COMPRESS = YES | CHAR

 is effective with character data that contains repeated

characters (such as blanks)

COMPRESS = BINARY

 takes significantly more CPU time to uncompress

than COMPRESS=YES | CHAR

 is more efficient with observations greater than

a thousand bytes in length

 can be very effective with numeric data

 can be effective with character data that contains

patterns, rather than simple repetitions

136

How SAS Compresses Data
A data file has these variables:

136

Name Type Length

LastName Character 20

FirstName Character 15

In uncompressed form, all observations use 35 bytes

for these two variables.

A D A M S B I L L

LastName

0

1

FirstName
2

0
… …

Best Practices Using

BASE SAS Software

June 27, 2012

69

137

COMPRESS = BINARY

137

Ross Data Compression uses both run-length encoding

and sliding window compression.

A data set has these variables:

Name Type Length

Answer1 Numeric 8

 ...

Answer200 Numeric 8

In uncompressed form, the data file resembles this:

Obs answer1 answer2 answer3 answer4 answer5 answer200

 1 1 2 1 2 1 . . . 2

 2 1 1 1 1 1 . . . 1

 3 2 2 2 2 2 . . . 2

...

138

Compression Guidelines

Some data sets do not

compress well or at all.

138

Best Practices Using

BASE SAS Software

June 27, 2012

70

139

Compression Dependencies
Because there is higher overhead for each observation, a

data file can occupy more space in compressed form than

in uncompressed form if the file has the following:

 few repeated characters

 small physical size

 few missing values

 short text strings

139

140

Compression Guidelines

140

Partial Log

data work.capacity_ch(compress = yes);

 set work.capacity;

run;

1175 data capacity_ch(compress = yes);
1176 set work.capacity;
1177 run;

NOTE: There were 108 observations read from the data set WORK.CAPACITY.
NOTE: The data set WORK.CAPACITY_CH has 108 observations and 7 variables.
NOTE: Compressing data set WORK.CAPACITY increased size by 50.00 percent.
 Compressed is 3 pages; un-compressed would require 2 pages.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.01 seconds

Best Practices Using

BASE SAS Software

June 27, 2012

71

141

Compression Dependencies
When you use the COMPRESS= data set option or the

COMPRESS= system option, SAS knows the following:

 size of the overhead introduced by compression

 maximum size of an observation.

141

If the maximum size of the observation is less

than the overhead introduced by compression,

SAS disables compression, creates an

uncompressed data set, and issues a note

stating that the file was not compressed.

142

Compression Dependencies

142

1 data test(compress = yes);
2 x = 1;
3 run;

NOTE: Compression was disabled for data set
 WORK.TEST because compression overhead would
 increase the size of the data set.
NOTE: The data set WORK.TEST has 1 observations and
 1 variables.
NOTE: DATA statement used:
 real time 0.51 seconds
 cpu time 0.10 seconds

Best Practices Using

BASE SAS Software

June 27, 2012

72

143

Compression Trade-Offs

Uncompressed Compressed

Usually requires more

disk storage.

Usually requires less

disk storage.

Requires less CPU time

to prepare observation
for I/O.

Requires more CPU

time to prepare
observation for I/O.

Uses more I/O
operations.

Uses fewer I/O
operations.

143

continued...

The savings in I/O operations

greatly outweighs the increase

in CPU time.

144

Compression Trade-Offs
Uncompressed Compressed

An updated observation

fits in its original

location.

An updated observation

might be moved from

its original location.

Deleted observation

space is never reused.

Deleted observation

space can be reused.

New observations are

always inserted at the
end of the data file.

When REUSE=YES, new

observations might not
be inserted at the end

of the data file.

144

Best Practices Using

BASE SAS Software

June 27, 2012

73

145 145

146 146

Chapter 1: Best Practices

1.1 Introduction

1.2 Techniques for Conserving CPU and Memory

1.3 Techniques for Minimizing I/O Operations

1.4 Techniques for Conserving Disk Space

Creating and Using Indexes with SAS

Data Sets

1.6 Techniques to Minimize Network Traffic (Self-Study)

1.5

Best Practices Using

BASE SAS Software

June 27, 2012

74

147

Using Indexes
An index is an optional file that you can create for

a SAS data file that does the following:

 points to observations based on the values of one

or more key index variables

 provides direct access to specific observations

 An index locates an observation by value.

148

Simplified Index File

Customer_ID

Key Value

Record Identifier (RID)

Page(obs, obs, ...)

4006 17(85)

4021 17(89)

4059 17(90)

4063 17(80, 86)

.

.

.

14958 1(1, 24)

14972 1(14)

.

.

.

The index file consists of entries that are organized

in a tree structure and connected by pointers.

Partial Listing of work.sales

Customer_ID Employee_ID . . .

14958 121031 . . .

14844 121042 . . .

14864 99999999 . . .

14909 120436 . . .

14862 120481 . . .

14853 120454 . . .

14838 121039 . . .

14842 121051 . . .

14815 99999999 . . .

14797 120604 . . .

.

.

.

.

.

.

.

.

.

Simplified Index

Best Practices Using

BASE SAS Software

June 27, 2012

75

149

The Purpose of Indexes
Indexes can provide direct access to observations

in SAS data sets to accomplish the following:

 yield faster access to small subsets (WHERE)

 return observations in sorted order (BY)

 perform table lookup operations (SET with KEY=)

 join observations (PROC SQL)

 modify observations (MODIFY with KEY=)

150

Reading SAS Data Sets without an Index

Input

SAS

Data

...

Best Practices Using

BASE SAS Software

June 27, 2012

76

151

Reading SAS Data Sets without an Index

Input

SAS

Data

Buffers

...

 The number of buffers

available affects the I/O.

Data

pages are

loaded.

152

Reading SAS Data Sets without an Index

Input

SAS

Data

Buffers The WHERE statement

selects observations

by reading data

 sequentially.

...

Data

pages are

loaded.

Best Practices Using

BASE SAS Software

June 27, 2012

77

153

Reading SAS Data Sets without an Index

Input

SAS

Data

Buffers

PDV

ID Gender Country Name

The WHERE statement

selects observations

by reading data

 sequentially.

...

Data

pages are

loaded.

154

Reading SAS Data Sets without an Index

Input

SAS

Data

Buffers

Buffers

ID Gender Country Name

...

The WHERE statement

selects observations

by reading data

 sequentially. Data

pages are

loaded. PDV

Best Practices Using

BASE SAS Software

June 27, 2012

78

155

Reading SAS Data Sets without an Index

Buffers Output

SAS

Data

Input

SAS

Data

Buffers

ID Gender Country Name

The WHERE statement

selects observations

by reading data

 sequentially. Data

pages are

loaded. PDV

156

Reading SAS Data Sets with an Index

Input

SAS

Data

Index

...

Best Practices Using

BASE SAS Software

June 27, 2012

79

157

Reading SAS Data Sets with an Index

Input

SAS

Data

The index file

is checked.
Index Index

...

158

Reading SAS Data Sets with an Index

Input

SAS

Data

Buffers

Index Index

Only

necessary

pages are

loaded.

...

The index file

is checked.

Best Practices Using

BASE SAS Software

June 27, 2012

80

159

Reading SAS Data Sets with an Index

Input

SAS

Data

Buffers

Index Index

The WHERE statement

selects observations

by using direct access.

...

Only

necessary

pages are

loaded.

The index file

is checked.

160

Reading SAS Data Sets with an Index

Input

SAS

Data

Buffers

ID Gender Country Name

Index Index

...

The WHERE statement

selects observations

by using direct access. Only

necessary

pages are

loaded.

The index file

is checked.

PDV

Best Practices Using

BASE SAS Software

June 27, 2012

81

161

Reading SAS Data Sets with an Index

Input

SAS

Data

Buffers

Buffers

ID Gender Country Name

Index Index

...

The WHERE statement

selects observations

by using direct access. Only

necessary

pages are

loaded.

The index file

is checked.

PDV

162

Reading SAS Data Sets with an Index

Output

SAS

Data

Input

SAS

Data

Buffers

Buffers

ID Gender Country Name

Index Index The index file

is checked.

Only

necessary

pages are

loaded.

The WHERE statement

selects observations

by using direct access.

PDV

Best Practices Using

BASE SAS Software

June 27, 2012

82

163

Creating Indexes
To create indexes at the same time that you create

a data set, use the INDEX= data set option on the

output data set.

To create or delete indexes on existing data sets,

use one of the following:

 DATASETS procedure

 SQL procedure

164

Creating Indexes
When you create the index, do the following:

 designate the key variable(s)

 specify the UNIQUE and/or the NOMISS option(s)

index option if appropriate (SQL CREATE INDEX

statement does not support the NOMISS option)

 select a valid SAS name for the index

(composite index only)

A data set can have these index features:

 multiple simple and composite indexes

 character and numeric key variables

Best Practices Using

BASE SAS Software

June 27, 2012

83

165

Viewing Information about Indexes
To display information in the log concerning index

creation or index usage, change the value of the

MSGLEVEL= system option from its default value

of N to I.

General form of the MSGLEVEL= system option:

OPTIONS MSGLEVEL=N | I;

11 options msglevel=i;
12 data work.sales_history(index=
13 (Customer_ID Product_Group
14 SaleID=(Order_ID
15 Product_ID)/unique));
16 set work.sales_history;
17 run;

NOTE: There were 1500 observations read from the data set WORK.SALES_HISTORY.
NOTE: The data set WORK.SALES_HISTORY has 1500 observations and 22 variables.
NOTE: Composite index SaleID has been defined.
NOTE: Simple index Product_Group has been defined.
NOTE: Simple index Customer_ID has been defined.

166

Creating an Index with the
INDEX= Data Set Option

General form of the INDEX= data set option:

SAS-data-file-name (INDEX =

 (index-specification-1</option> </option>

 …<index-specification-n</option> </option> >));

For increased efficiency, use the INDEX=

option to create indexes when you initially

create a SAS data set.



Best Practices Using

BASE SAS Software

June 27, 2012

84

167

Creating an Index with the
INDEX= Data Set Option

The following code would delete the indexes:

 data work.sales;
 set work.sales;

run;

options msglevel=i;
data work.sales(index=Customer_ID Product_Group
 SaleID=(Order_ID Product_ID)/unique));
 set work.history;
 Value_Cost=CostPrice_Per_Unit*Quantity;
 Year_Month=mdy(Month_Num, 15, input(Year_ID,4.));
 format Value_Cost dollar12.
 Year_Month monyy7.;
 label Value_Cost="Value Cost"
 Year_Month="Month/Year";
run;

168

Creating / Deleting Indexes with PROC
DATASETS

You can use the DATASETS procedure on existing data

sets to create or delete indexes.

General form of the PROC DATASETS step to delete

or create indexes:

PROC DATASETS LIBRARY=libref NOLIST;

 MODIFY SAS-data-set-name;

 INDEX DELETE index-name;

 INDEX CREATE index-specification

 < / options>;

QUIT;

Best Practices Using

BASE SAS Software

June 27, 2012

85

169

Managing Indexes with PROC DATASETS

The following code would delete the indexes:

options msglevel=n;

proc datasets library=work nolist;

 modify sales;

 index create Customer_ID;

 index create Product_Group;

 index create SaleID=(Order_ID

 Product_ID)/unique;

quit;

proc datasets library=work nolist;

 modify sales;

 index delete Customer_ID

 Product_Group SaleID;

quit;

170

Creating / Deleting Indexes with PROC SQL
You can use PROC SQL on existing data sets to create

or delete indexes.

General form of the PROC SQL step to create or delete

indexes:

PROC SQL;

 DROP INDEX index-name

 FROM table-name;

 CREATE <option> INDEX index-name

 ON table-name(column-name-1,...

 column-name-n);

QUIT;

Best Practices Using

BASE SAS Software

June 27, 2012

86

171

Managing Indexes with PROC SQL

The following code would delete the indexes:

options msglevel=i;

proc sql;

 create index Customer_ID

 on work.sales(Customer_ID);

 create index Product_Group

 on work.sales(Product_Group);

 create unique index SaleID

 on work.sales(Order_ID, Product_ID);

quit;

proc sql;

 drop index Customer_ID, Product_Group, SaleID

 from work.sales;

quit;

Name of Index

Variable

Name

172

Comparing Techniques for Index Creation

INDEX= Data Set

Option

PROC DATASETS PROC SQL

You can create the SAS data

set at the same time that the

index is created.

You can only create indexes

on existing SAS data sets

and existing variables.

You can only create indexes

on existing SAS data sets

and existing variables.

To create an additional index,

you must re-create the

existing indexes.

Additional indexes can be

created without re-creating

the original indexes.

Additional indexes can be

created without re-creating

the original indexes.

The DATA step can perform

data manipulation at the same

time that the index is created.

PROC DATASETS cannot

perform data manipulation.

The CREATE INDEX

statement cannot perform

data manipulation.

To delete one or more

indexes, you must re-create

the other required indexes.

One or more indexes can be

deleted without deleting all of

the indexes on the data set.

One or more indexes can be

deleted without deleting all of

the indexes on the data set.

An existing index can be re-

created without first deleting it.

If an index exists, it must be

deleted before it can be re-

created.

If an index exists, it must be

deleted before it can be re-

created.

Best Practices Using

BASE SAS Software

June 27, 2012

87

173

Index Usage Possible
A WHERE condition might possibly use an index,

provided the condition contains any one of the

following:

 a comparison operator or the IN operator

 the NOT operator

 the special WHERE operators (CONTAINS, LIKE,

IS NULL|IS MISSING, and BETWEEN…AND)

 the TRIM or SUBSTR functions (if the second

argument of the SUBSTR function is 1)

174

When Is an Index Not Used?
An index is not used in the following circumstances:

 with a subsetting IF statement in a DATA step

 No single index can supply all required observations.

 Any function other than TRIM or SUBSTR appears

in the WHERE expression.

 The SUBSTR function does not search a string

beginning at the first position.

 The SOUNDS-LIKE operator (=*) is used.

 if SAS determines that all observations will satisfy

the WHERE expression

 if SAS determines that it is more efficient to read

the data sequentially

Best Practices Using

BASE SAS Software

June 27, 2012

88

175

Using a Subsetting IF

When does the subsetting IF statement select

observations?

a. before the observation is copied into the PDV

b. after the observation is in the PDV

176

Using a Subsetting IF

Output

SAS

Data

Input

SAS

Data

Buffers

Buffers

ID Gender Country Name

The subsetting IF

statement

selects observations.

PDV

Best Practices Using

BASE SAS Software

June 27, 2012

89

177

WHERE Expression Index Usage
SAS uses the following steps to decide whether

to evaluate a WHERE expression using a sequential

read or using an index:

 Determine whether the WHERE expression can

be satisfied by an existing index.

 Select the best index, if several indexes are available.

 Estimate the number of observations that qualify.

 Compare the probable resource usage for both

methods.

 SAS estimates the I/O operations for indexed

 access based on the subset size and sort order.

178

Subset Size

SAS might

use an index.

Data Set
0%
3%

33.3%

SAS will

probably

use an index.

SAS will

use an index.

Best Practices Using

BASE SAS Software

June 27, 2012

90

179

Data Order
For data that is sorted

and indexed on the same

variable(s), retrieval time

through the index is much

faster than either sorted or

indexed data alone.

 where Customer_ID in
 (70201, 70187, 70175);

Unsorted data

Sorted data

Fewer pages are

copied into memory

if the data is sorted.

Obs Customer_ID
.
.
.

 8939 56487
 8940 70175
 8941 74667

.

.

.

.

.

.

45775 84989
45776 70201
45777 20209

.

.

.

.

.

.

32548 89619
32549 70187
32550 76278

.

.

.

180

Maintaining Indexes

Data Management Tasks Index Action Taken

Copy the data set with the

COPY procedure or the

DATASETS procedure

Index file constructed for

new data file

Move the data set with the

MOVE option in the COPY

procedure

Index file deleted from IN=

library; rebuilt in OUT=

library

Copy the data set with a

drag-and-drop action in

SAS Explorer

Index file constructed for

new file

continued...

Best Practices Using

BASE SAS Software

June 27, 2012

91

181

Maintaining Indexes

 The APPEND procedure and the INSERT INTO

 statement in the SQL procedure update the index

 file after all the data is appended or inserted.

Data Management Tasks Index Action Taken

Rename the data set Index file renamed

Rename the variable Variable renamed to new

name in index file

Add observations Value/Identifier pairs added

Delete observations Value/Identifier pairs

deleted; space recovered

for re-use

Update observations Value/Identifier pairs

updated if values change

continued...

182

Maintaining Indexes

Data Management Tasks Index Action

Taken

Delete a data set.
 proc datasets lib=work;

 delete a;

 run;

Index file deleted

Rebuild a data set with a DATA step or the

SQL procedure.
 data a; proc sql;

 set a; create table a as

 run; select * from a;

 quit;

Index file deleted

Sort the data set in place with the FORCE

option in the SORT procedure.
 proc sort data=a force;

 by var;

 run;

Index file deleted

Best Practices Using

BASE SAS Software

June 27, 2012

92

183

Guidelines for Indexing
Suggested guidelines for creating indexes:

 Create an index when you intend to retrieve a small

subset of observations from a large data file.

 Do not create an index if the data file page count is

less than three pages. It is faster to access the data

sequentially.

 Create indexes on variables that are discriminating.

These variables precisely identify observations that

satisfy WHERE expressions.

 When you create a composite index, make the first key

variable the most discriminating.

 Consider the cost of maintaining an index for a data file

that is frequently changed.

continued...

184

Guidelines for Indexing
 To minimize I/O for indexed access, sort the data by

the key variable(s) before creating the index. Maintain

the data file in sorted order by the key variable to

improve performance.

 Minimize the number of indexes to reduce disk storage

and update costs. Create indexes only on variables

that are often used in queries or BY-group processing

(when the data cannot be sorted).

 Consider how often your applications use an index.

An index must be used often in order to compensate

for the resources used in creating and maintaining it.

 When you create an index to process a WHERE

expression, do not try to create one index that might

be used to satisfy every conceivable query.

Best Practices Using

BASE SAS Software

June 27, 2012

93

185

Index Trade-offs

Advantages Disadvantages

fast access to a small

subset of observations

extra CPU cycles and I/O

operations to create and

maintain an index

values returned in sorted

order

increased CPU to read

the data

can enforce uniqueness extra disk space to store

the index file

extra memory to load the

index pages and the

compiled SAS C code to

use the index

186

Using an Index
Combining a Large Data Set with a Small One

You can use multiple SET statements to combine the two

data sets.

data catalog_customers(keep=Customer_ID Order_ID Quantity

 Total_Retail_Price Customer_Country

 Customer_Gender Customer_Name

 Customer_Age)

 errors(keep=Customer_ID);

 set work.catalog(keep=Customer_ID Order_ID Quantity

 Total_Retail_Price);

 set work.all_customers key=Customer_ID;

 if _IORC_=0 then output catalog_customers;

 else do;

 output errors;

 message = iorcmsg();

 ERROR=0;

 putlog _n_ = ‘The Problem is: ’ message;

 end;

run;





Best Practices Using

BASE SAS Software

June 27, 2012

94

187

Using the KEY= Option
An index is always used when a SET or MODIFY

statement contains the KEY= option.

Specify the KEY= option in the SET statement to use an

index to retrieve an observation that has key values

equal to the current value of the key variable(s).

General form of the KEY= option:

SET SAS-data-file-name KEY=index-name;

188

Using the _IORC_ Automatic Variable
When you use the KEY= option, SAS creates an

automatic variable named _IORC_, which is an acronym

for input/output return code.

You can use the value of _IORC_ to determine whether

the search of the index was successful.

IORC=0 indicates that SAS found a matching

observation.

IORC ne 0 indicates that the SET statement did not

successfully execute. One possible

cause is that SAS did not find a matching

observation.

Best Practices Using

BASE SAS Software

June 27, 2012

95

189

Be Careful When Outputting Data

189

 Data from the previous observation is retained in the

PDV as data coming into the Data Step from a SAS

data set does not reinitialize at the start of a new

iteration of the Data Step. Thus, if an error occurs in

reading a record via index processing, then the

previous record’s data remains in the PDV.

 If an index read error does occur, you can use the

IORCMSG() Data Step function to see a more

descriptive message why the error occurred.

190

Using an Index
Combining a Large Data Set with a Small One

You can use multiple SET statements to combine the two

data sets.

data catalog_customers(keep=Customer_ID Order_ID Quantity

 Total_Retail_Price Customer_Country

 Customer_Gender Customer_Name

 Customer_Age)

 errors(keep=Customer_ID);

 set work.catalog(keep=Customer_ID Order_ID Quantity

 Total_Retail_Price);

 set work.all_customers key=Customer_ID;

 if _IORC_=0 then output catalog_customers;

 else do;

 output errors;

 message = iorcmsg();

 ERROR=0;

 putlog _n_ = ‘The Problem is: ’ message;

 end;

run;





Best Practices Using

BASE SAS Software

June 27, 2012

96

191 191

192 192

Chapter 1: Best Practices

1.1 Introduction

1.2 Techniques for Conserving CPU and Memory

1.3 Techniques for Minimizing I/O Operations

1.4 Techniques for Conserving Disk Space

1.5 Creating and Using Indexes with SAS Data Sets

Techniques to Minimize Network Traffic

(Self-Study)
1.6

Best Practices Using

BASE SAS Software

June 27, 2012

97

193

Objectives
Examine available efficiency techniques to do the

following tasks:

 access database data

 perform remote SAS processing

193

194

Techniques to Minimize Network Traffic
 Manipulate the data as close to the source of the data

as possible.

 Transfer subsets of data or summarized data.

194

Best Practices Using

BASE SAS Software

June 27, 2012

98

195

Accessing Database Data
When you access database (DBMS) data, the

performance of your SAS job can be influenced by the

following:

 technique chosen to access the data

 number of columns and rows returned

 ordering of the rows

 choice of PROC SQL or DATA step

195

196

Choosing a DBMS Access Technique
Access your DBMS data with the following primary

techniques:

 SAS/ACCESS LIBNAME engine

 SQL Pass-Through Facility

196

Best Practices Using

BASE SAS Software

June 27, 2012

99

197

LIBNAME Engine Advantages
DATA and PROC step features:

 You can take advantage of threaded reads.

 The WHERE clause can be passed to DBMS.

 Sort requests can be passed to DBMS.

 Transparent access to DBMS data occurs.

 DATA and PROC step syntax is unchanged.

 Knowledge of DBMS-specific SQL is unnecessary.

 Data retrieval results can be saved as a SAS table or

a view.

197

198

LIBNAME Engine Advantages
When you use the SQL procedure the following are

additional features:

 Joins can be passed to DBMS.

 GROUP BY criteria can be passed to DBMS.

 Selected aggregate functions are passed to DBMS.

198

Best Practices Using

BASE SAS Software

June 27, 2012

100

199

Using SASTRACE and SASTRACELOC
Behind the scenes, when SAS sees that the code

references a DBMS table, SAS sends an SQL query

directly to the DBMS.

To display this query in the log, you can use the

SASTRACE= and the SASTRACELOC= options.

199

The SASTRACE= and SASTRACELOC= system

options are typically turned on for debugging

and off for production jobs.

200

Using SASTRACE and SASTRACELOC
General form of the SASTRACE= option:

General form of the SASTRACELOC= option:

Example:

200

SASTRACE=',,,d'

SASTRACELOC = stdout | SASLOG

options sastrace= ',,,d' sastraceloc = saslog;

STDOUT is the file reference that can be assigned

at invocation for the standard output files.

Best Practices Using

BASE SAS Software

June 27, 2012

101

201

Threaded Reads
A threaded read retrieves the result set from the database

on multiple connections between SAS and the DBMS.

Threaded reads are accomplished by doing the following:

 using the LIBNAME engine

 establishing a read connection between the DBMS

and each SAS thread

 partitioning the result set across the connections

 passing the rows to SAS simultaneously (in parallel)

across the connections

201

202

Scope of Threaded Reads
SAS steps, named threaded applications, are

automatically eligible for a threaded read.

 Base SAS procedures

 MEANS, REPORT, SORT, SQL,

SUMMARY, TABULATE

 SAS/STAT procedures

 GLM, LOESS, REG, ROBUSTREG

 SAS/SHARE procedure

 SERVER (with the experimental

THREADEDTCP option)

 SAS Enterprise Miner procedures

 DMINE, DMREG

202

Best Practices Using

BASE SAS Software

June 27, 2012

102

203

Performance Impact of Threaded Reads
Optimal performance of threaded reads requires the

following:

 SAS running on a fast uniprocessor or a

multiprocessor machine

 the database running on a high-end symmetric

multiprocessor (SMP) machine

 partitioned database table(s)

 similar size partitions

 large DBMS result set

203

204

Reading Columns
Techniques for limiting the number of columns returned

from the DBMS include the following:

 DROP= SAS data set option

 KEEP= SAS data set option

 VAR statement in the PRINT procedure

 SELECT clause in the SQL procedure

Examples:

204

data temp;

 set mylib.table(keep = name age state);

run;

proc sql;

 select name, age, state

 from mylib.table;

quit;

Best Practices Using

BASE SAS Software

June 27, 2012

103

205

Reading Columns

205

 DROP=

 KEEP=

 VAR statement

 SAS SELECT

clause

SAS System

DBMS

Results

DBMS SELECT

clause

206

Subsetting Using WHERE Criteria
Subset the rows returned from a query to potentially

reduce the following:

 processing time

 network traffic

 memory requirements

206

data temp;
 set mylib.table;
 where state in ('NC', 'SC');
run;

proc sql;
 select *
 from mylib.table
 where state in ('NC', 'SC');
quit;

Examples:

Best Practices Using

BASE SAS Software

June 27, 2012

104

207

Subsetting Using WHERE Criteria
If the SAS/ACCESS engine can do so, the WHERE

criteria is passed directly to the database to gain

efficiency in processing.

207

WHERE

Criteria
SAS System DBMS

Results

208

Splitting the WHERE Criteria
If the WHERE clause or statement contains SAS

enhancements not known to the database, the following

events occur:

 The WHERE clause or statement is split up, which

enables the DBMS to process as much of the WHERE

criteria as possible.

 Rows that satisfy those criteria are sent back to SAS,

and then checked to see if they meet the remaining

WHERE clause or statement conditions.

208

Best Practices Using

BASE SAS Software

June 27, 2012

105

209

Sorting the Rows Returned
If sorting is required, you can perform it by doing the

following:

 Using a BY statement in a DATA or PROC step forces

the DBMS to sort the data in the order specified by the

BY variable(s) before returning the results to SAS.

 Using an ORDER BY clause in PROC SQL which is

passed to the DBMS.

209

data temp;

 set mylib.table;

 by state;

run;

proc sql;

 select * from mylib.table

 order by state;

quit;

210

SQL Procedure Pass-Through Facility

210

DBMS

SAS Session

Execute

Query

proc sql...

. . . RESULTS

Query

Request
1

2

3

DBMS

Table

DBMS

Table

Query

Results

Best Practices Using

BASE SAS Software

June 27, 2012

106

211

SQL Pass-Through Advantages
 DBMS can optimize all table joins.

 Results of a query can be saved as a SAS data file.

 A SAS SQL view can contain a pass-through query.

211

212

SQL Pass-Through Example

212

proc sql;

 connect to DBMS (DBMS-specific connection

 options);

 select *

 from connection to DBMS

 (select flightnumber, flightdate,

 dayofweek, delay

 from DBMS-table-name

 where substr(destination, 1, 1)

 = 'C');

 disconnect from DBMS;

quit;

Best Practices Using

BASE SAS Software

June 27, 2012

107

213

The Embedded LIBNAME Statement
An alternative to coding the LIBNAME statement or

using the SQL Pass-Through Facility when you create a

PROC SQL view is the embedded LIBNAME statement.

The embedded LIBNAME statement has these

characteristics:

 is defined in a USING clause within the PROC SQL

view

 is assigned when the view begins to execute

 can contain connection information

 uses the LIBNAME engine to access the DBMS

 can store label, format, and alias information

 is de-assigned when the view completes executing

213

214

The Embedded LIBNAME Statement
Example:

214

proc sql;

 create view sasuser.joinview as

 select m.FlightNumber, m.FlightDate,

 Deplaned, DayOfWeek, Delay

 from oralib.marchflights as m,

 oralib.flightdelays as f

 where m.flightnumber = f.flightnumber

 and m.flightdate = f.flightdate

 and delay > 0

 using libname dbmslib engine

 engine-connection-options;

 select * from sasuser.joinview;

quit;

Best Practices Using

BASE SAS Software

June 27, 2012

108

215

SAS/ACCESS Summary

215

The SAS/ACCESS LIBNAME engine enables transparent

access to your DBMS tables. As much code as possible is

passed behind the scenes by SAS to the DBMS for

processing in order to optimize performance.

The SQL Pass-Through Facility enables the programmer

to control the native DBMS SQL queries that are passed

to the database to execute.

216

Distributed Processing
Distributed processing can be defined as any one of the

following:

 one process (a client or local host) requesting services

or data from another process (a server or remote host)

executing on a different machine

 the distribution of computing resources to enable

utilization of data files, hardware resources, and

software resources between different computers

 the division of applications into tasks to be performed

on the most appropriate machine, thereby maximizing

all computing resources

216

Best Practices Using

BASE SAS Software

June 27, 2012

109

217

Parallel Processing
Parallel processing is the dividing of an application into

subunits of work that can be executed simultaneously.

This parallel processing can occur on the same machine

or different machines.

The purposes of parallel processing (also known as

multiprocessing or asynchronous processing) are to do

the following:

 execute independent tasks in parallel (SAS Version 8)

 execute select dependent tasks in parallel (SAS®9)

 take advantage of multiple processors on a symmetric

multiprocessing (SMP) single machine

217

continued...

218

Parallel Processing
 take advantage of each processor on a network of

machines

 complete a job in less total elapsed time than it would

take to execute the same job serially

 increase usage of underutilized CPUs

– exploit current investment

– prevent further monetary outlay for hardware

218

Best Practices Using

BASE SAS Software

June 27, 2012

110

219

Grid Computing
A computing grid is a collection of multiple computers

that solve one application problem.

The concept of grid computing is to tap into the unused

processor cycles of computers hooked up to a network

to solve problems that require a massive amount of

processing power and deal with vast amounts of data.

The idea of grid computing is that any device or computer

could hook into a network and make use of the collective

unused power of every device on the network or grid.

219

continued...

220

Grid Computing
The goal is to use the processing cycles of all computers

in a network for solving problems too intensive for any

stand-alone machine.

Grid computing is not a new concept, but one that has

gained renewed interest recently for at least two reasons:

 Grid computing offers a less expensive alternative to

purchasing new, larger server platforms.

 Computing problems in several industries involve

processing large volumes of data and/or performing

repetitive computations to the extent that the workload

requirements exceed existing server platform

capabilities.

220

Best Practices Using

BASE SAS Software

June 27, 2012

111

221

Distributed Processing Solutions
A distributed processing solution is implemented when an

application requires a service from another computer or

itself.

Services include the following:

 compute services

 data transfer services

 remote library services (RLS)

221

222

Compute Services
Compute services enable you to move any or all

segments of an application to other processors to take

advantage of hardware, software, and data resources.

222 ...

Client (Local)

Report

Request

Result

Server

(Remote)

Data

Report

SAS Program

http://sww.sas.com/dept/pub/dpps/pho/logos/resources/SAS_med_BB-W_mac.gif
http://sww.sas.com/dept/pub/dpps/pho/logos/resources/SAS_med_BB-W_mac.gif

Best Practices Using

BASE SAS Software

June 27, 2012

112

223

Compute Services Benefits
Compute services are useful when the following

conditions exist:

 Processing remote data files that have these

attributes:

– are too large to transfer

– are frequently updated

– must remain on the remote platform for security

reasons

 The remote machine has necessary hardware or

software resources that the local machine does not

have.

 A remote CPU is underutilized.

223

224

Compute Services Considerations
Compute services are less appropriate when these

circumstances occur:

 Data files are small.

 A remote CPU is near 100% utilization.

 The remote computer's I/O subsystem is heavily

loaded.

 The remote computer has little memory available.

224

Best Practices Using

BASE SAS Software

June 27, 2012

113

225

Requirements for Compute Services
To use compute services, you need to do the following:

 have SAS/CONNECT on both machines

 sign on to the remote machine to begin a remote

SAS session

 submit an RSUBMIT block

225

226

Using Compute Services
Before you use compute services, a connection to the

remote machine must be established. You can do either

of the following:

 Sign on directly with a SIGNON statement.

 Use the AUTOSIGNON=YES option to specify to sign

on when compute services needs to start a task on the

remote machine.

226

Best Practices Using

BASE SAS Software

June 27, 2012

114

227

Using Compute Services
The AUTOSIGNON option enables the local SAS session

to automatically invoke a new SAS session when a

request is made.

General form of the AUTOSIGNON option:

The default is NO.

Example:

227

OPTIONS AUTOSIGNON = NO|YES;

options autosignon = yes;

228

Using Compute Services
After a connection to a remote machine is established,

you can send code to execute on that machine by

enclosing the code in an RSUBMIT block.

General form of the RSUBMIT block:

Example:

228

RSUBMIT <remote-machine-name>;

 code to be processed on the remote machine

ENDRSUBMIT;

local SAS session
rsubmit bcom1;
 SAS code to run on remote machine
endrsubmit;

Best Practices Using

BASE SAS Software

June 27, 2012

115

229

Data Transfer Services
Using data transfer services, you can transfer a copy of a

remote data file to your local computer for processing, or

copy data from your local computer to the remote

computer.

229 ...

Client (Local)

Server

(Remote)

Remote

Copy

Remote

Data

Local

Copy

Local

Data

Download

Upload

230

The UPLOAD and DOWNLOAD Procedures
To perform data transfer, use the UPLOAD and

DOWNLOAD procedures. The UPLOAD and

DOWNLOAD procedures enable you to do the following:

 transfer an entire SAS library or selected members

of a SAS library in a single step

 transfer an entire SAS catalog or selected entries

in a catalog in a single step

 transfer external files

230

continued...

http://sww.sas.com/dept/pub/dpps/pho/logos/resources/SAS_med_BB-W_mac.gif
http://sww.sas.com/dept/pub/dpps/pho/logos/resources/SAS_med_BB-W_mac.gif

Best Practices Using

BASE SAS Software

June 27, 2012

116

231

The UPLOAD and DOWNLOAD Procedures
 enable WHERE processing to subset the data before

the transfer occurs

 enable data set options (for example, DROP= or

KEEP=) when transferring individual SAS data sets

 replicate certain data set attributes, including indexes

and integrity constraints

231

232

UPLOAD and DOWNLOAD Procedure Benefits
Benefits of using the UPLOAD and DOWNLOAD

procedures over other data transfer applications are as

follows:

 control over variables and observations transferred

 transparent translation of SAS files across operating

system types (for example, EBCDIC to ASCII)

 transparent translation of SAS files across differing

releases of SAS

232

Best Practices Using

BASE SAS Software

June 27, 2012

117

233

Transferring a SAS Data Library
Example: Transfer the entire SAS data library on the

remote machine to the local machine.

233

libname orionwin 'directory-on-Windows';

rsubmit bcom1;

libname orionunx 'directory-on-UNIX';

proc download inlib = orionunx

 outlib = orionwin;

run;

endrsubmit;

234

Remote Library Services
Remote library services (RLS) provide transparent access

to remote data libraries as if they were stored locally.

234 ...

Client (Local)

Server

(Remote)

Remote

Data

Request for

Records

SAS Program

 Processing

Data Records

http://sww.sas.com/dept/pub/dpps/pho/logos/resources/SAS_med_BB-W_mac.gif
http://sww.sas.com/dept/pub/dpps/pho/logos/resources/SAS_med_BB-W_mac.gif

Best Practices Using

BASE SAS Software

June 27, 2012

118

235

Benefits of RLS
 A single copy of the data can be maintained while

processing is performed on the local machine.

 The data appears to be local.

 RLS enables updates to remote data as a result of

local processing.

 RLS permits a user interface to reside on the local

system while the data is on a remote system.

235

236

Considerations for RLS
 Multiple passes of the data require the same data

to go across the network multiple times. Examples

include the following:

– statistical procedures

– multiple PROC steps on the same data

 Network traffic might increase significantly.

236

Best Practices Using

BASE SAS Software

June 27, 2012

119

237

Requirements for RLS
To use RLS, you need to do one of the following:

 have SAS/CONNECT on both machines or

SAS/CONNECT on the local machine and

SAS/SHARE on the remote machine

 sign on to the remote machine to begin a remote SAS

session, if SAS/CONNECT is used on the remote

machine

 issue a LIBNAME statement in your local session with

the SERVER= option

237

238

SERVER= Option
General form of the SERVER= option in the LIBNAME

statement:

Examples:

Access a library stored on your user ID on UNIX:

Access the Work library on z/OS:

238

LIBNAME libref 'SAS-data-library' | SLIBREF=server-libref

 SERVER=remote-host;

libname rmtunx '/orion/sasdata' server = sdcunx;

libname rmtwork slibref = work server = sdcmvs;

Best Practices Using

BASE SAS Software

June 27, 2012

120

239

Decisions, Decisions, Decisions
When deciding which strategy is most appropriate for your

application, you must determine the following:

 computing needs of your application

 computing capacity and load of each computer

 charge-backs for use of mainframe or UNIX time and

data storage

 amount of data to be processed

 load on your network

 output needs

– printers

– tape drives

– GUI display

239

continued...

240

Decisions, Decisions, Decisions
 appropriateness of the data location

– the frequency of data updates

– available disk space

– the increased speed of the application if the data is

on the same computer

– problems related to storing multiple copies of the

data

240

